
Integrated Simulation and Emulation Using Adaptive Time
Dilation

Hee Won Lee, David Thuente, and Mihail L. Sichitiu
North Carolina State University

Raleigh, NC 27695
{hlee17, djthuent, mlsichit}@ncsu.edu

ABSTRACT

Simulation and emulation techniques are commonly used
to evaluate the performance of complex networked systems.
Simulation conveniently predicts the behavior of a complex
networked system while usually requiring fewer simplifying
model assumptions often necessary for theoretical analysis.
In contrast, emulation does not need to re-implement the
target real systems, so it may improve on the implemen-
tation efficiency of simulation while maintaining much of
the realism of testbeds. A hybrid approach in which sim-
ulation nodes connect to emulation hosts can be used to
combine the advantages of both approaches. In this pa-
per, we propose integrating simulation with emulation using
adaptive time dilation to evaluate system performance. If
a simulator schedules its events in real time and the sim-
ulation time keeps up with the real time, then the hybrid
system works very well and meets its deadlines. However,
a heavily-loaded simulator can introduce significant simula-
tion delays and thereby create situations where these delays
impact the accuracy of the system. Our approach uses time
dilation to reduce simulation delays and thus increasing the
accuracy of the integrated simulation and emulation sys-
tem. Our adaptive time dilation dynamically controls the
time dilation factor to avoid system overloads for both the
simulation and the emulation components and to improve
the execution correctness of the hybrid system.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications; C.4 [Computer Sys-
tems Organization]: Performance of Systems—Modeling
techniques; D.4.8 [Operating Systems]: Performance—
Modeling and prediction

Keywords

Simulation; Emulation; Virtualization; Time Dilation; ns-3;
KVM

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS’14, May 18–21, 2014, Denver, Colorado, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2794-7/14/05 ...$15.00.

http://dx.doi.org/10.1145/2601381.2601384.

1. INTRODUCTION
Modern networks have evolved into highly complex sys-

tems that are difficult to debug and to evaluate their per-
formance. Moreover, the network protocols and distributed
applications currently in use are sometimes too complex to
accurately model their behavior.

Simulation is a primary technique for evaluating the per-
formance of networked systems. Simulation generally uses
event-driven models to predict the behavior of complex net-
worked systems while requiring fewer simplifying model as-
sumptions than usually necessary for theoretical analysis.
However, unless a simulation model accurately captures the
behavior of the real system, the simulation results may be
significantly different from those of real systems.

Emulation testbeds [9, 2] can directly use actual imple-
mentation code and thus avoid the verification and valida-
tion issues required for simulators. While emulation offers
much of the realism of testbeds, it is often expensive to scale
to a large number of emulated elements.

A hybrid approach using both simulation and emulation
can take advantage of both approaches. While simulation
is a powerful tool for evaluating large networks, emulation
makes it possible to use real protocol implementations, real
application code, and even real operating systems (OSs).
For instance, the work in [30] integrates S3F [36], a scalable
simulation framework, with network emulation OpenVZ [8].

Time dilation allows the passage of virtual time (i.e., time
passage from the perspective of a virtual node) to proceed
at a slower rate than real time by a specified factor, which is
referred to as time dilation factor (TDF) [28]. When TDF >
1, time dilation creates, to the virtual machines, the illusion
of increased performance [28].

VH

Real-time Simulation

Outgoing
Packet

Outgoing Packet
Scheduled Time

Actual Outgoing
Packet Generation

Real Time

Outgoing Packet Delay

Emulation Host

(a) (b)

Figure 1: (a) Example topology with an integrated
emulation and simulation system with the simulator
sending one packet to the emulator. (b) If the simu-
lator is overloaded, outgoing packets can be delayed
with respect to their original scheduled times.

In this paper, we propose an approach integrating sim-
ulation with emulation using adaptive time dilation in or-

167

der to keep the simulation and emulation appropriately syn-
chronized and thereby improve accuracy. Usually, when a
simulation node exchanges packets with an emulation host,
the simulator schedules its events in real time under the as-
sumption that simulation time passes faster than real time.
However, when using real-time scheduling, the events’ sim-
ulation time may fall behind the real time. Therefore, if an
outgoing packet is generated from a simulation node with
an emulation host as its destination, outgoing packet delay
can be introduced, as shown in Fig. 1. When the simulator
is heavily loaded with a large-scale network topology, out-
going packet delay can be significant and thereby reducing
the accuracy of a hybrid simulation and emulation system.
Time dilation can reduce the outgoing packet delay, since
the simulator can process more events as the virtual time
passage rate slows down.

For the emulation, time dilation can prevent CPU over-
load of the physical hosts (PHs), as time dilation allows
virtual hosts (VHs) to perceive higher processing power and
network capacity than in real time [27].

Many emulation approaches have used lightweight virtual-
ization to increase scalability [44, 43, 14, 20]. These systems
emulate part of the real code (e.g., the network protocol
stack), but not an entire application or the OSs. In con-
trast, our approach uses full virtualization to create fully
self-contained VHs and allows our system to emulate un-
modified OSs.

Our adaptive time dilation mechanism dynamically changes
the time passage rate of the simulator(s) and fully-virtualized
hosts, while controlling physical system loads.

The remainder of the paper is organized as follows. In
Section 2, we describe our adaptive time dilation approach
that can reduce simulation delay in a hybrid simulation and
emulation environment. Section 3 presents our system im-
plementation. In Section 4, we discuss our TDF controller
tuning and evaluate our integrated simulation and emula-
tion system. Finally, related work in Section 5 is followed
by our conclusion in Section 6.

2. PROPOSED APPROACH
Our system emulates applications on unmodified OSs with

each running as a virtual host (VH). Simulators are used to
simulate networks that can exchange packets with the VHs.

For scalability, multiple PHs can be used for mapping the
VHs and simulators to host machines. Once all elements
(i.e. VHs and simulators) are ready to start, our integrated
simulation and emulation system proceeds at a variable time
rate with precise synchronization between all VHs and the
simulator.

Figure 2(a) depicts a sample network with Windows/Lin-
ux/FreeBSD clients connected to a server through several
routers. Figure 2(b) shows a possible mapping of the el-
ements in the real-world topology into virtual elements on
five physical machines. The server and the clients can be em-
ulated via a virtualizing technology (in our system we use
KVM [10, 5]). The four routers and their links are modeled
using a simulator (in our work ns-3 [7]).

Previous emulation systems [17, 20, 30, 14] avoid using
full virtualization in order to use available resources effi-
ciently because scalability of the emulated systems was con-
sidered more important than full isolation among VMs. In
contrast, our approach uses full virtualization to emulate
unmodified OSs and unmodified applications.

Server

Routers

Windows Clients

Linux Clients

FreeBSD Clients

...

......

(a) An example of a real-world topology

Simulated
Network
Nodes

Virtual
Server

PH1

...

Virtual
Windows
Clients

...

PH2

PH3 PH4 PH5

Synchronized Virtual Time

Simulator

Virtual
Linux

Clients

Virtual
FreeBSD
Clients

...

(b) Corresponding integrated simulation and
emulation topology

Figure 2: Overview of the proposed approach with
(a) an example of a real world topology and (b) a
possible mapping of the virtual elements to physical
hosts

2.1 The Effects of Time Dilation on Simula-
tion

When the simulator schedules its events in real time, de-
lays can be introduced due to excessive execution time. Time
dilation can reduce these delays.

Consider the topology shown in Fig. 3(a). VH1 running
on PH1 generates and sends a packet to VH2 running on
PH3, and the packet passes through a simulator running
on PH2. A packet that arrives at the simulator is trans-
formed into a simulation event, which in turn triggers the
generation of follow-up events. When the simulator com-
pletes the processing of all the events generated by the live
packet injection, it then creates an outgoing live packet as
appropriate.

As the simulator uses real-time scheduling with a best-
effort policy, an outgoing packet delay may occur due to

168

PH1 PH2

VH1

PH3

VH2

Simulator

: Live packet to simulation event
: Simulation event to live packet

tS: Simulation timestamp
tR: Real time
tV: Virtual time

Legend

EV CPU: Event's execution time

(a) Network topology

Real time

tSEV1 tSEV2

tR

EV1 CPU EV2 CPU

tSEV3

EV3 CPU

tR+4tR+1 tR+20Outgoing Packet Delay

Packet Processing Model Delay

(µs)

For TDF = 1,
virtual time = real time.

(b) No time dilation (TDF = 1)

Virtual time

tSEV1 tSEV2

tV+4tV

EV1 CPU EV2 CPU

tSEV3

EV3 CPU

tV+1 tV+10

(c) Time dilation (TDF = 2)

Virtual time

tSEV1 tSEV2

tV+4tV

EV1 CPU EV2 CPU

tSEV3

EV3 CPU

tV+1 tV+5

(d) Time dilation (TDF = 4)

Figure 3: The effect of reduction in outgoing packet
delay by time dilation. (a) The simulator transforms
a live packet into simulation events, processes the
events, and creates an outgoing packet. (b) Real-
time scheduler running in real time (TDF=1) in-
troduces outgoing packet delay. (c) Time dilation,
where virtual time passes at half the rate of real time
(TDF=2), can reduce outgoing packet delay. (d) An
even larger TDF=4 can completely eliminate outgo-
ing packet delay.

the simulation events’ execution time. Under a best-effort
policy, if the timestamp of an event to be processed falls be-
hind real time, the event is processed immediately provided
processing resources are available.

For an illustrative explanation, assume that the simulator
generates three events to handle an incoming live packet,
as shown in Fig. 3(b) (in reality, in ns-3, about 13 events
are generated for forwarding a packet through a simulated
network node). When a live packet arrives at the simula-
tor at tR in real time, the simulator creates event 1 with
timestamp tSEV 1. Event 2 handles a propagation delay on a
communication channel, and event 3 generates an outgoing
live packet for VH2.

We refer to the time that it takes for the simulator to
process a packet in the time unit of the simulator (i.e., the

timestamp of ns-3) as packet process model delay. Hence,
packet process model delay is tSEV 3 - tSEV 1 in Fig. 3. Out-
going packet delay is the time difference between event 3’s
scheduled timestamp (tSEV 3) and the actual time at which
the simulator starts to process event 3. Outgoing packet de-
lay is a key metric for accuracy and we will explore adaptive
time dilation to reduce it.

Assume that event 1 is scheduled by the simulator to fin-
ish after 1 µs. In the example in Fig. 3(b), however, the
simulator takes 3 µs to process event 1. Event 1 triggers the
follow-up events: events 2 and 3. Assume the execution of
events 2 and 3 takes 7 µs and 3 µs respectively. Since event
3 is scheduled at time tSEV 3 (4 µs after tSEV 1) in simulation
time but is sent out after 10 µs from the start of tEV 1, an
outgoing packet delay of 6 µs occurs in this case.

As shown in Fig. 3(c), when using a time dilation factor
of two (TDF = 2), virtual time passes at half of the real-
time rate. While the execution time of the events does not
change, the simulator now runs in virtual time whose pas-
sage rate is 1

TDF
(= 1

2
) with respect to real time. Event 1, 2,

and 3 are then executed along the axis of virtual time (not
real time as in Fig. 3(b)) at the scheduled timestamps tSEV 1,
tSEV 2, and tSEV 3 respectively. Therefore, the outgoing packet
delay is reduced to 2 µs in real time (= 1 µs in virtual time).

In Fig. 3(d), when TDF = 4, events 1 and 2 finish their
computation before the next event’s scheduled time. In this
case the simulator has a chance to catch up with the real
time events. Hence, outgoing packet delay is completely
eliminated.

Therefore, outgoing packet delay can be reduced or com-
pletely eliminated by increasing the TDF. When the simu-
lator is heavily loaded with many incoming packets or sim-
ulation events, the simulator may not be able to process all
events in real time, thus increasing outgoing packet delay
and degrading throughput.

2.2 The Effects of Time Dilation on Emula-
tion

If virtual time passes at a slower rate, physical resources
appear faster to virtual nodes [27], as the CPU can execute
more instructions per unit of virtual time. Hence, a PH
can support more VHs, or heavier traffic generators can be
executed in a VH without a degradation of the emulated
performance.

In addition, when virtual time slows down and a VH gen-
erates traffic, the virtual nodes (e.g., simulators and the
other VHs) receive the traffic at a slower rate in real time.
Consequently, time dilation reduces the workload of physi-
cal systems running virtual nodes at the cost of an increase
in emulation time.

2.3 Virtual Time

Virtual Time
Virtual TimeTDF

H

U
Guest OS

VH Simulator

Shared Memory
Simulated

Network Nodes

From TDF Controller

Figure 4: Synchronization of virtual elements

169

Virtual elements, including VHs and simulators, have their
own time generators usually using the real time clock of their
PH as a reference. All virtual elements running on our sys-
tem are instead synchronized to a virtual clock with a com-
mon time passage rate by sharing a TDF value as shown in
Fig. 4.

The ratio between the virtual time passage rate and real
time is 1

TDF
. Hence, given the real time tR, virtual time tV

can be obtained by:

tV = tVstart(n) +
tR − tRstart(n)

TDF (n)
, (1)

where tVstart(n) is the value of starting point of nth TDF
change (epoch) in virtual time and tRstart(n) is the value of
starting point of nth TDF change in real time.

In our approach, the simulators use virtual time tV instead
of real time tR for their real-time scheduler, while VHs use
virtual time tV generated by the modified hypervisors such
that unmodified guest OSs can be used in the VHs.

Since each simulator keeps track of virtual time based on
the TDF stored in shared memory, the simulator readjusts
the virtual time rate whenever the TDF is changed. For
VHs’ virtual time, we control the hypervisor time by chang-
ing the interrupt frequency of the hypervisor according to
the value of TDF. Since the guest OS of the hypervisor
creates its own time based on the interrupt frequency, the
guest’s time passage rate changes according to TDF. Since
all virtual elements use a common TDF (i.e., the system
TDF), their virtual times are all synchronized.

2.4 Adaptive Time Dilation
Our approach is to control the time passage rate such

that outgoing packet delay is reduced or maintained at a
low level. Time passage rate control is also used to prevent
VHs from overloading their PHs.

Load Monitor TDF Controller

TDF...
Simulation

Virtual
Time Virtual

Time

VHs
Physical Host

Figure 5: Virtual time control mechanism using
TDF to control the system load

Our virtual time control mechanism is shown in Fig. 5.
For each PH, a load monitor is periodically checking the
CPU loads. The TDF controller then computes a new TDF
based on its PH’s CPU loads and broadcasts the TDF to
all the controllers running on the other PHs. The computed
TDF from each controller is the minimum TDF value that
is required in a PH to prevent simulators and VHs from
introducing outgoing packet delay created by PH overloads.

When a TDF controller receives the other PHs’ TDF mes-
sages, it updates the current running TDF with the maxi-

mum of all values received from all PHs. Using the maximum
of the TDF values guarantees that no virtual elements are
overloaded (even if some of the PHs may be underloaded).

3. SYSTEM IMPLEMENTATION
Our proposed system uses ns-3, which is a widely used

discrete-event network simulator. We chose ns-3 because its
real-time scheduler uses CPU resources efficiently by using
sleep-waiting and busy-waiting; however, our system works
independent of the simulator choice.

For VHs, there are several hypervisors that support full
virtualization (e.g. KVM [10, 5], Xen [13], and Virtual-
Box [12]). Our system uses the KVM hypervisor, which
was recommended [42] as the optimal choice for high per-
formance computing environments; however, our approach
is equally applicable to other hypervisors.

In this section, we first present our system architecture
and then our virtual time implementation. Lastly, we define
TDFload, the TDF used for system load control.

3.1 System Architecture

Virtual network channel

Legend

Shared memory

Controller process

Shared memory access

PH1

TDF

VH

TDF

PH4

Control message channel

TAP + Bridge

Virtual host

Network Interface

TDF Controller
Simulator
Simulated network node

TDF Controller

TDFload

Switch 2

PH2 PH5

Switch 1

PH3 PH6

Figure 6: System architecture

Fig. 6 depicts our system architecture that synchronizes
VHs and simulators distributed over PHs with a dynamic
TDF. The TDF controller on each PH monitors system
loads, computes TDFload, and periodically broadcasts the
TDFload to all the controllers running on the other PHs.
The system TDF is defined as the maximum of the TDFload

of all the PHs:

TDFsystem = max(TDFload,PH1, TDFload,PH2, ...), (2)

where TDFload,PHi
is the minimum TDF required to main-

tain the system loads below a target level in PHi.
The TDF controller stores the system TDF value in the

shared memory of each PH, and the VHs use this TDF value
to control the progress of their virtual clocks. Since VHs
distributed over multiple PHs use a common TDF value,
they are all synchronized.

Virtual elements such as VHs and simulators are con-
nected through TAP [11] interfaces and bridges; TAP is a
virtual network kernel device that simulates a link layer han-
dling Ethernet frames. For example, as illustrated in Fig. 6,
a simulator creates one or more TAP interfaces, which can
be bridged to a real network interface to communicate with
VHs running in other PHs.

The TDF control messages use a physically-isolated con-
trol channel through switch 1, while virtual elements (i.e.,
VHs and simulators) use a virtual network channel through

170

switch 2 to communicate with each other. The isolated
control channel assures robust TDF control operations and
eliminates control traffic from affecting the virtual network
traffic.

3.2 Virtual Time Implementation
We modify the real time scheduler of ns-3 to use virtual

time instead of real time. For VHs, the hypervisors also use
virtual time.

The ns-3 real-time scheduler obtains real time by calling
GetRealtime(), a method of the WallClockSynchronizer
class [7]. We replace gettimeofday(), a POSIX system call
to retrieve the PH’s real time in GetRealTime(), with our
function get_virtualtime(). Our function that computes
virtual time, get_virtualtime(), is an implementation of
(1), where tR is obtained by gettimeofday() and TDF is
retrieved from shared memory. The KVM hypervisor also
uses our function get_virtualtime() to obtain its virtual
time.

In short, the ns-3 simulator and the KVM hypervisor both
replace gettimeofday() with our function get_virtualtime()
to obtain the time and hence all virtual elements’ time passes
at a rate of 1

TDF
with respect to real time.

3.3 TDF for System Load Control
When the load monitor obtains a new CPU load, the TDF

controller computes a new TDF, TDFload. A desirable TDF
control property is that the computed TDF adapts rapidly
to current loads, while the frequency of TDF changes is mini-
mized for system stability. To meet these conflicting require-
ments, the TDF controller uses three parameters: α for the
exponential moving average (EMA), Gain, and Insensitivity
that balance the TDF responsiveness with system stability
as seen below.

EMA can be used to prevent rapid changes in the cur-
rent load (Loadcurrent) from changing TDFload too rapidly.
The EMA value of a system load for a monitoring interval,
denoted by LoadEMA(n), is computed as:

LoadEMA(n) = (1− α) · LoadEMA(n− 1)

+α · Loadcurrent. (3)

Gain determines how rapidly TDFload will adapt to sys-
tem loads. If LoadEMA(n) is greater than a target CPU
load (Loadtarget), TDFload increases, and vice versa as well.
The magnitude of the increase or decrease is directly pro-
portional to the value of the Gain.

Insensitivity is used to minimize the number of TDF changes
until there are significant deviations of LoadEMA from a tar-
get CPU load Loadtarget.

In summary, TDFload(n) is given by:

TDFload(n) = TDFload(n− 1)

+Gain · sgn(LoadEMA(n)− Loadtarget)

·

∣

∣

∣

∣

2 ·
LoadEMA(n)− Loadtarget

Loadtarget

∣

∣

∣

∣

Insensitivity

,

(4)

where sgn(x) is the sign of x, and |x| is the absolute value
of x.

When the load monitor obtains a new current load, Loadcurrent,
the TDF controller computes a new TDF, TDFload using (3)
and (4). The TDF controller computes the new TDFload

depending on the configuration of the control parameters α,

Gain, and Insensitivity that reflect different priorities of
the system such as responsiveness versus stability.

4. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the inte-

grated simulation and emulation system.

4.1 Experimental Setup
For the evaluation we used three identical physical hosts

(PHs): each PH is a Dell PowerEdge R210 with two 1 Giga-
bit Ethernet interfaces, which are connected to two separate
1 Gbps switches. The first interface is used for exchanging
TDF control messages, and the second interface is used for
emulating links between virtual nodes, i.e., virtual elements
on different PHs communicate through the second interface.

We use KVM (qemu-kvm-0.13.0) for full virtualization
and ns-3 (ns-3.12.1) for simulation. Ubuntu Linux (ubuntu-
10.04-server-amd64) is used for both PHs and VH guest OSs.

4.2 TDF Controller Tuning
The goal of the TDF controller is to adapt the system TDF

to CPU loads in the PHs, while minimizing the number of
TDF changes. We determine the parameters α in (3) and
Gain, and Insensitivity in (4) for a responsive, yet stable
TDFload control.

The current TDF is controlled to maintain the current
PH CPU load Load(i) close to a target CPU load TDFload.
The tracking error between the current load Load(i) and the
target load Loadtarget can be quantified as:

C1 =

∑N
i=1

(Loadtarget − Load(i))2

N
, (5)

where the summation is taken over a measurement period
with N samples. Similarly, the change in TDFload can be
measured by:

C2 =
N−1
∑

i=1

(

TDFload(i+ 1)− TDFload(i)
t(i+ 1)− t(i)

)2

, (6)

where the summation is taken over the same measurement
period of N .

The normalized value of C1, denoted by C1, is obtained by
dividing C1 by the average of C1 values over a measurement
period (60 seconds in our experiments). Similarly, C2 is the
normalized value of C2.

While we consider two objectives (low tracking error cor-
responding to a low value of C1 and infrequent TDFload

changes corresponding to a low value of C2), we favor in-
frequent TDFload changes over better tracking and thus we
define the total cost as:

C = C1 +wC2, (7)

where w, the relative weight assigned to C2, is greater than
one. Experimentally we find that the values of w between
5 and 20 results in relatively infrequent TDFload changes;
therefore, we choose w = 10. Our TDF controller operates as
designed (i.e., the rapid adaptation of TDF to system loads
and the minimization of the number of TDF changes) when
α ≤ 1

8
, Gain of 1 ∼ 3, and Insensitivity of 4 ∼ 10. Under

these ranges of α, Gain, and Insensitivity, the total cost C
is minimized in our experiments. For all the experiments we
use α = 1

64
, Gain = 1 and Insensitivity = 10, as the PH

running the simulator changes the CPU load rapidly. We

171

also use the target CPU load Loadtarget = 60%, at which
VHs are able to generate traffic without packet losses.

Finally, we use a TDF control interval of 10 ms (which is
also a CPU load checking interval), as a smaller TDF control
interval starts to affect system loads.

4.3 Evaluation Topology

PH1 PH2

VH1

PH3

VH2

Simulator

N1 2 N3 N

Number of simulated network nodes = n

Packets Packets

(a)

Figure 7: Evaluation Topology

When the simulator schedules its events in real time, out-
going packet delay can be introduced due to the simulator
execution time. In order to measure outgoing packet de-
lay, we construct an evaluation topology, as shown in Fig. 7.
This topology is used for the performance evaluation of our
approach.

The simulator running in PH2 creates n simulated net-
work nodes, each of which simulates a network node (i.e.,
a host or router) with the Internet protocol stack and two
CSMA network devices. We use the network devices to con-
nect simulated network nodes through CSMA channel mod-
els in ns-3. The CSMA channel model has two configurable
parameters: data rate and delay for modeling transmission
and propagation delay respectively. The number of simu-
lated network nodes, n, does not include the ghost nodes for
VHs.

VH1 running on PH1 generates packets and sends them
toward VH2 running on PH3. The packets passes through
simulated network nodes on PH2.

4.4 Outgoing Packet Delay
We discuss the effect of time dilation on outgoing packet

delay, and then investigate how network nodes’ processing
delays can affect outgoing packet delay.

4.4.1 The Effect of Time Dilation

1 3 7 15 31
0

10

20

30

40

Number of simulated network nodes

Pa
ck

et
 p

ro
ce

ss
in

g
m

od
el

 d
el

ay
 [µ

s]

(a)

1 3 7 15 31
0

500

1000

1500

2000

Number of simulated network nodes

O
ut

go
in

g
pa

ck
et

de
la

y
[µ

s]

(b)

Figure 8: The simulator measures (a) packet pro-
cessing model delay and (b) outgoing packet delay,
while processing a UDP packet in the topology of
Fig. 7, where the CSMA channel model delay is 0 µs.

In the topology of Fig. 7, a CSMA channel model connects
VH1 to the first simulated network node (N1), and another
CSMA channel model connects the last simulated network
node (Nn) to VH2. The data rate and delay of the CSMA
channel model are 1 Gbps and 0 µs respectively. VH1 gen-
erates 200 146-byte UDP packets (the UDP payload size =
100 bytes) at a constant bit rate of one packet per second.
Figures 8 (a) and (b) show the average packet processing
model delay and the average outgoing packet delay respec-
tively, both measured in the simulator.

When a packet arrives at the simulator, the packet is
transformed into a series of events. The real-time sched-
uler processes all the events. The ns-3 simulator computes
packet processing model delay. The packet process model
delay is the time that it takes for the simulator to process
a packet in the time units of the simulator and is shown
in Fig. 8(a). As the number of simulated network nodes
increases, the packet processing model delay increases pro-
portionally because a packet passes through more simulated
network nodes and CSMA channels.

Outgoing packet delay is the delay between the instant
when the simulator generates a packet towards VH2 and
the scheduled time of that packet. As the number of sim-
ulated network nodes increases, outgoing packet delay also
increases, as shown in Fig. 8(b). As the real-time sched-
uler in ns-3 simulates the behavior of a physical layer (i.e.,
the CSMA channel in our experiments), unless we use a
hardware-based simulator such as a FPGA-based channel
simulator [18], it is difficult or impossible for the simula-
tion to keep pace with real time, because the execution time
that it takes to process events for the physical layer behav-
iors (e.g., transmission delay, propagation delay, inter-frame
gaps, etc.) is much larger than the scheduled time. As
each network node in the simulation introduces additional
delays, the simulator falls further and further behind real
time as a packet progresses through the simulated network
nodes. Hence, as the number of simulated network nodes
and CSMA channels increase, outgoing packet delay also in-
creases almost proportionally.

1 3 7 15 31
0

500

1000

1500

2000

Number of simulated network nodes

O
ut

go
in

g
pa

ck
et

 d
el

ay
 [µ

s]

TDF = 1
TDF = 2
TDF = 4
TDF = 8

Figure 9: Increasing TDF decreases outgoing packet
delay.

We can decrease the outgoing packet delay from the ns-3
simulator by slowing the virtual time. As time proceeds at a
slower rate (i.e., TDF increases), the outgoing packet delay
is reduced almost linearly. For instance, as shown in Fig. 9,
when the simulator runs 31 nodes in real time, there is an
outgoing packet delay of 1685 µs. When TDF increases to
2, 4, and 8, the outgoing packet delay decreases to 808, 384,
and 171 µs respectively.

172

4.4.2 Consideration of Network Node’s Processing
Delay

The ns-3 network simulator does not include a model for
the network node’s processing delay. The work in [32] pro-
poses a methodology to capture processing delay models
from communication software running on real devices.

A network node’s processing delay can significantly affect
the total packet delay. Hence, for our evaluation we measure
a physical node’s processing delay.

PH PH3

ping

(a)

800 1000 1200 1400
0

5

10

15

Ping delay [µs]

Fr
eq

ue
nc

y
[%

]

Average = 871 µs

(b)

PH PH2 PH3

VH2
ping

(c)

800 1000 1200 1400
0

5

10

15

Ping delay [µs]

Fr
eq

ue
nc

y
[%

]

Average = 1241 µs

(d)

Figure 10: Experiments for measuring the process-
ing delay of a PH: ping delay distribution without
(a), (b) and with (c), (d) a PH in the path

In order to measure a node’s processing delay, we conduct
delay measurements on two different network topologies il-
lustrated in Fig. 10. We first measure a ping delay between
two VHs without a PH between VHs, as shown in Fig. 10(a).
We send a 64-byte ICMP packet every second. Figure 10(b)
shows a delay distribution for a total of 1000 ICMP packets.
The average ping delay of 1000 ICMP packets is 871 µs.

We then measure another ping delay on the configuration
shown in Fig. 10(c). In this configuration, VH1 sends the
same ICMP packets to VH2 through a real physical machine
(PH2). The average delay of 1000 ICMP packets on this
configuration is 1241 µs, and the distribution is shown in
Fig. 10(d).

Hence, the average processing delay of a real node (PH2)
is 1241−871

2
= 185µs. In our performance evaluation, we use

185µs for simulating the nodes’ processing delay.
In order to model a node’s processing delay in simulation,

we use an additional 185 µs of CSMA channel model delay.
Since a packet is transmitted from simulated network node
1 (N1) to simulated network node n (Nn) in the topology
of Fig. 7, we add the CSMA channel delay on each node’s
outgoing link; i.e., for simulated network node N1, the delay
addition is placed on N1’s right-side CSMA channel. Hence,
packet processing model delay linearly increases by ∼ 185 µs
per simulated network node. For instance, for 31 simulated
network nodes, the packet processing model delay is 185
µs× 31 nodes = 5735 µs while the other delays such as
inter-frame gaps and transmission delays are negligible by
comparison.

While packet processing model delay increases approxi-
mately linearly with the number of simulated network nodes

1 3 7 15 31
0

2000

4000

6000

Number of simulated network nodes

Pa
ck

et
 p

ro
ce

ss
in

g
m

od
el

 d
el

ay
 [µ

s]

(a)

1 3 7 15 31
0

20
40
60
80

100

Number of simulated network nodes

O
ut

go
in

g
pa

ck
et

de
la

y
[µ

s]

(b)

Figure 11: The simulator measures (a) packet pro-
cessing model delay and (b) outgoing packet de-
lay, while processing a 146-byte UDP packet in the
topology of Fig. 7, where the CSMA channel model
delay is 185 µs.

in Fig. 11(a), outgoing packet delays are almost constant, as
shown in Fig. 11(b). When CSMA channel delay is suffi-
ciently large (185 µs) for the simulation to keep pace with
real time, the outgoing packet delay is expected to be com-
pletely removed, but a delay of approximately 60 µs is still
present: after the ns-3 real-time scheduler performs a sleep
and spin wait for a CSMA channel model delay of 185 µs,
the CsmaNetDevice of the ns-3 simulator receives a packet
and then sends it to TapBridge for a real packet genera-
tion. This process takes approximately 60 µs. Since out-
going packet delay occurs only at the last node (i.e., Nn),
it remains almost constant, independent of the number of
simulated network nodes.

1 3 7 15 31
0

500

1000

1500

2000

Number of simulated network nodes

D
el

ay
 [µ

s]

Packet processing model delay
Outgoing packet delay

(a)

1 3 7 15 31
0

1000

2000

3000

4000

5000

6000

Number of simulated network nodes

D
el

ay
 [µ

s]

Packet processing model delay
Outgoing packet delay

(b)

Figure 12: Comparison of the packet processing
model delay and the outgoing packet delay when
CSMA channel model delay is (a) 0 µs and (b) 185 µs

For comparison, Fig. 12 juxtaposes the packet processing
model delay and the outgoing packet delay shown in Fig. 8
(for CSMA channel delay = 0 µs) and Fig. 11 (for CSMA
channel delay = 185 µs). Recall that outgoing packet delay
is our key metric for accuracy. When comparing Fig. 12 (a)
and (b), as CSMA channel delay of 185 µs is included for
nodes’ processing delay, the outgoing packet delay is signif-

173

0 2 4 6 8 10
100

101

102

103

104

105

106

Real time [s]

O
ut

go
in

g
pa

ke
t d

el
ay

 [µ
s]

n = num. of simulated network nodes

n = 3
n = 7
n = 15

(a)

0 20 40 60
0

5

10

15

20

Virtual time [s]

Th
ro

ug
hp

ut
 [M

bp
s]

n = 3
n = 7
n = 15

(b)

0 10 20 30 40 50 60
100

101

102

103

104

105

106

Virtual time [s]

O
ut

go
in

g
pa

ke
t d

el
ay

 [µ
s]

n = 3
n = 7
n = 15

(c)

0 20 40 60
0

5

10

15

20

Virtual time [s]

Th
ro

ug
hp

ut
 [M

bp
s]

n = 3
n = 7
n = 15

(d)

0 1 2 3
1

2
3
4
5

10

20
30
40

Real time [minute]

TD
F

n = 15
n = 7
n = 3

(e)

Figure 13: Without time dilation, as the number of
simulated network nodes increases, outgoing packet
delay significantly increases in (a), and throughput
is degraded in (b). When using adaptive time dila-
tion, outgoing packet delay is reduced to ∼ 100 µs
in (c), and throughout reaches the packet generation
rate (10 Mbps) in (d). Our TDF controller increases
TDF for a larger number of simulated network nodes
in (e).

icantly reduced. Even though the real-time scheduler simu-
lates a physical layer, if the nodes’ processing delay is cap-
tured in the model (through the CSMA channel delay in our
setup), the simulator is able to catch up with real time, re-
sulting in a significant reduction in the delay introduced by
the simulator.

4.5 Evaluation of Adaptive Time Dilation
When the simulator is heavily loaded due to network traf-

fic, outgoing packet delay can increase. In this section, we
show how adaptive time dilation can reduce outgoing packet
delay under several traffic scenarios. For all the scenarios,
we use a data rate 10 Mbps and we model the 185 µs of
node processing delay by using the CSMA channel model.

4.5.1 UDP Traffic Scenario
In this section we test UDP traffic on our evaluation topol-

ogy (Fig. 7). VH1 sends towards VH2 1046-byte UDP pack-
ets (the UDP payload size = 1000 bytes) at 10 Mbps.

The simulator can be overloaded by a large number of sim-
ulated network nodes or a large traffic load. Under the influx
of 10-Mbps UDP packets, with a single simulated network
node (n = 1), the simulator can almost process all the events
in time, i.e., the outgoing packet delay is approximately 60
µs in our experiments. We do not show this result to avoid
cluttering Fig. 13(a). However, as the number of simulated
network nodes increases, the outgoing packet delay signifi-
cantly increases as shown in Fig. 13(a). When n = 7, peaks
and troughs occur, as the simulator is repeatedly overloaded
and underloaded by the traffic loads. When n = 15, the out-
going packet delay continues to increase since the simulator
is not able to process all the events in time. As the num-
ber of simulated network nodes increases, throughput is also
degraded, as shown in Fig. 13(b).

As the TDF controller dynamically changes TDF accord-
ing to CPU loads, outgoing packet delay is maintained at
approximately 100 µs regardless of the number of simulated
network nodes. When the number of simulated network
nodes is 15, outgoing packet delay is even lower due to the
effect of time dilation, as shown in Fig. 13(c). Figure 13(c)
also shows that as the number of simulated network nodes
increases, it takes more time for the simulation to reach a
steady state. With adaptive time dilation, throughput is
approximately the same as the offered load (i.e., 10 Mbps),
as shown in Fig. 13(d).

As the number of simulated network nodes increases, our
TDF controller increases the TDF to reduce simulation loads
and, consequently, simulation run time increases, as shown
in Fig. 13(e).

0 20 40 60
0

20

40

60

80

100

Real Time [s]

C
PU

 L
oa

d
[%

]

PH2 running simulator

n = 15
n = 7
n = 3

(a)

0 1 2 3
0

20

40

60

80

100

Real time [minute]

C
PU

 L
oa

d
[%

]

PH2 running simulator

n = 15
n = 7
n = 3

(b)

Figure 14: CPU loads (a) without and (b) with
adaptive time dilation.

Our TDF controller controls CPU loads at Loadtarget =
60%, as shown in Fig. 14. As the number of simulated net-
work nodes increases, the PH2’s CPU load also increases,
as shown in Fig. 14(a). However, when using adaptive time
dilation, even if the number of simulated network nodes in-
creases, the CPU loads are controlled near the target load
60%. The CPU loads of PH1 and PH3 are much lower than
60%, meaning that in our system at an equal traffic load,
the simulator has a much higher CPU load than the VHs.

4.5.2 TCP Traffic Scenario
We generate TCP traffic on our evaluation topology (Fig. 7).

We run an iperf [4] client on VH1 and an iperf server on VH2,
while changing the number of simulated network nodes on
PH2.

Without time dilation (TDF = 1), as the number of simu-
lated network nodes increases, outgoing packet delay signif-
icantly fluctuates, as shown in Fig. 15(a) . However, when

174

0 2 4 6 8 10
100

101

102

103

104

105

106

Virtual time [s]

O
ut

go
in

g
pa

ke
t d

el
ay

 [µ
s]

n = num. of simulated network nodes

n = 3
n = 7
n = 15

(a)

0 10 20 30
0

2

4

6

8

10

Virtual time [s]

Th
ro

ug
hp

ut
 [M

bp
s]

n = 3
n = 7
n = 15

(b)

0 2 4 6 8 10
100

101

102

103

104

105

106

Virtual time [s]

O
ut

go
in

g
pa

ke
t d

el
ay

 [µ
s]

n = 3
n = 7
n = 15

(c)

0 10 20 30
0

2

4

6

8

10

Virtual time [s]

Th
ro

ug
hp

ut
 [M

bp
s]

n = 3
n = 7
n = 15

(d)

0 30 60 90
1

2

3
4
5

10

Real time [s]

TD
F

n = 15
n = 7
n = 3

(e)

Figure 15: Without time dilation, as the number of
simulated network nodes increases, outgoing packet
delay significantly fluctuates in (a), and the corre-
sponding throughput is shown in (b). When using
adaptive time dilation, outgoing packet delay is re-
duced to approximately 200 µs in (c), and the cor-
responding throughput is shown in (d). Our TDF
controller increases TDF for larger number of sim-
ulated network nodes in (e).

using adaptive time dilation, the outgoing packet delay is
controlled to about 200 µs when the number of simulated
network nodes is n = 3, 7 and 15. Throughput variance in
Fig. 15(d) is slightly reduced by adaptive time dilation, as
compared with Fig. 15(b).

As shown in Fig. 13(e), for seven simulated network nodes,
TDF is stably maintained at TDF ≈ 2 for UDP traffic.
However, as shown in Fig. 15(e), TDF changes are frequent
for TCP traffic, since TCP produces bursty traffic. On the
other hand, since TCP gradually increases traffic over time,
for 15 simulated network nodes, there are no TDF oscil-
lations as seen for UDP traffic (compare Fig. 13(e) with
Fig. 15(e)).

4.5.3 Multiple VHs Scenario
In this section, we create a scenario where multiple VHs

run on a PH, as shown in Fig. 16(a). We run 8 VHs in PH1
and 8 VHs in PH3. VH1 running on PH1 sends UDP packets

PH PH2

VH1

PH3

Simulator

N 2 N NnNn

Number of simulated
network nodes = n

VH1

8 VHs 8 VHs

(a)

0 10 20 30 40 50 60
100

101

102

103

104

105

106

Virtual time [s]

O
ut

go
in

g
pa

ke
t d

el
ay

 [µ
s]

n = num. of simulated network nodes

n = 3
n = 7
n = 15

(b)

0 20 40 60
0

1

2

3

Virtual time [s]

Th
ro

ug
hp

ut
 [M

bp
s]

n = 3
n = 7
n = 15

(c)

0 1 2 3
1

2
3
4
5

10

20
30
40

Real time [minute]

TD
F

n = 15
n = 7
n = 3

(d)

Figure 16: Each VH on PH1 sends 1.25-Mbps UDP
packets to the corresponding VH on PH3 through
the simulator in (a). With adaptive time dilation,
outgoing packet delay, throughput and TDF are
shown in (b), (c), and (d) respectively.

at 1.25 Mbps (constant bit rate) towards VH1′ running on
PH3. The size of each UDP packet is 1046 bytes. VH2
on PH1 sends UDP packets at the same rate towards VH2′

on PH3, and so on. Since the 8 VHs on PH1 generate a
total of 10 Mbps (= 1.25 Mbps × 8 VHs), the simulator
processes the same amount of traffic as in the previous UDP
scenario discussed in Section 4.5.1, where a single VH on
PH1 generated 10-Mbps UDP packets.

As shown in Fig. 16(b), the outgoing packet delay has
slightly increased compared to Fig. 13(c). While the same
amount of traffic (i.e., 10 Mbps) passes through the simula-
tor in total, multiple VHs can create more variance in traffic
patterns. Hence, the simulator may sometimes process a
closely bunched series of packets such that the simulator
can often be busier, thus slightly increasing outgoing packet
delay. As the number of simulated network nodes increases,
time dilation decreases outgoing packet delay. As shown in
Fig. 16(c), despite a slight increase in the outgoing packet
delay, throughput remains the same as in Fig. 13(d). On
the other hand, the TDF changes for the multiple VHs sce-
nario in Fig. 16(d) are similar to those for the UDP traffic
scenario in Fig. 13(e).

175

5. RELATED WORK
The work in this paper builds on a large body of related

work from many different areas, including time dilation, hy-
brid simulation and emulation systems, real time emulation
systems and large-scale emulation systems.
Time control: The approach in SliceTime [41] is to al-
ternately suspend and resume the entire system in order to
connect VMs to discrete event simulations [33] that may lag
behind in time under heavy system loads [40]. DieCast [27]
uses time dilation, which allows virtual time to pass slower
than real time such that physical resources appear to virtual
nodes to be faster [28]. The Open Network Emulator uses
a temporal model referred to as relativistic time and em-
ploys a lightweight virtualization framework called Weaves
to enhance scalability [17, 20]. Weaves emulates multiple
instances of an application or protocol stack inside a single
OS process [35]. The approach in [43, 14] uses a timeslice-
based scheduler; as the scheduler gives a timeslice to a VE
(Virtual Environment), the VE consumes the timeslice and
stops its operation.

The approaches in [40, 41, 28, 27] are static in that the
relative ratio between real and virtual time is fixed for the
life of the VMs. NETplace [23] and NETbalance [24] use
epoch-based virtual time [22] for implementing a dynamic
time dilation. While the dynamic time dilation in [22] uses
a threshold-based load control mechanism, our TDF con-
troller maintains system loads at a target level. Our TDF
control mechanism towards a target system load can perform
more accurately for a hybrid simulation and emulation envi-
ronment in that real-time simulation is sensitive to system
loads.

In parallel discrete event simulation, conservative algo-
rithms use lookahead for time synchronization [37]. While
these algorithms send null messages to compute lookahead,
our approach does not exchange null messages. Instead, our
adaptive time dilation approach sends TDF messages, which
may change the time passage rate of virtual elements. In the
algorithm of [37], time proceeds for an amount of lookahead
and stops, but in our approach, once TDF changes, virtual
time continues to proceed at the rate of 1

TDF
.

Hybrid simulation and emulation: As mentioned in In-
troduction, the work in [30] integrates S3F [36], a scalable
simulation framework, with the OpenVZ [8]-based network
emulation. Each VE is synchronized with the simulation
clock in S3F. The S3F simulation engine controls VEs’ exe-
cution to preserve the causal relationship of the whole net-
work scenario [30].

ROSENET [26, 25] is a network emulation approach that
uses a remote high-fidelity simulation along with a low-fidelity
emulator serving a locally executing real-time application to
improve scalability and accuracy.

WHYNET [45] consists of a wireless network emulator
(TWINE [44]), simulated radio devices, and physical testbeds.
Physical elements includes 801.11-based networks, sensor
networks, and SDR/MIMO radio platforms. TWINE [44]
embeds the simulated physical and MAC layers into the op-
erating system for scalability.

The approach in [38] incorporates a physical layer emula-
tor for OFDM-based IEEE 802.11 communications into the
ns-3 simulator. The work in [21] simulates heterogeneous
systems by using a discrete-event simulator, TOSSIM, that
implements the lowest layer of components in the TinyOS

API, and EmSIM that provides a real code simulation ca-
pability.
Real-time emulation: CORE (Common Open Research
Emulator) is a real-time network emulator that emulates
the network stack of routers or hosts through virtualiza-
tion, and that simulates the links which connect them to-
gether [15]. CORE employs the lightweight virtualization
to allow over a hundred virtual machines to run on a single
emulation server. Wireless channel emulators use hardware
to simulate wireless channel propagation in real time [39, 31,
18]. RAMON (Rapid-Mobility Network emulator) is a soft-
ware/hardware emulator that allows the ns-2 simulator to
interact with hardware components including access points
(APs), attenuators, laptops, and smart phones, while emu-
lating mobility in wireless networks [29]. MNE (Mobile Net-
work Emulator) simulates the mobility of wireless nodes [34].
Since MNE operates in real time, it uses simplistic propa-
gation models that do not require significant amounts of
processing.
Large-scale emulation: Several large testbeds partially
employ or significantly depend on emulation techniques. Plan-
etLab [9] is a distributed overlay network designed to evalu-
ate planetary-scale network services, allowing multiple ser-
vices to run concurrently, each in its own slice [16, 19]. Em-
ulab [2] offers integrated access to emulated PC nodes, an
802.11 a/b/g testbed, and universal software defined radios
(USRP devices). Emulab can also be expanded into Plan-
etLab testbeds, allowing for live Internet experimentation.
GENI [3] provides researchers across the country with col-
laborative environments on which new network architectures
and their implementations can be tested, while supporting
scalable experimentation on shared and heterogeneous in-
frastructure. DETERlab [1] supports experimentation on
next-generation cyber security technologies, and uses the
Emulab cluster testbed software to control and manage a
pool of PCs. ModelNet [6] emulates the delays, losses, and
throughput of packets traveling between different applica-
tion instances.

6. CONCLUSION
In this paper, we proposed an approach integrating simu-

lation with emulation by using adaptive time dilation. VHs
and simulators are synchronized to a common virtual time
passage rate. When the simulator schedules its events in
real time, event processing can easily overload the simula-
tor, as the simulation load increases. Our TDF controller
dynamically changes a virtual time rate such that outgoing
packet delay is minimized in the simulator. Without using
virtual time in our evaluation, the simulator becomes heavily
loaded as TCP and UDP traffic passes through it, and thus
increases outgoing packet delay. Our adaptive time dila-
tion approach dynamically changes TDF such that outgoing
packet delay is minimized. Since our integrated simulation
and emulation approach uses full virtualization, unmodified
OSs and applications can be used in the system.

7. REFERENCES
[1] DeterLab. http://www.isi.deterlab.net.
[2] Emulab. http://www.emulab.net.
[3] GENI Project. http://www.geni.net.
[4] Iperf. http://iperf.sourceforge.net.
[5] KVM. http://www.linux-kvm.org.

176

[6] ModelNet. http://modelnet.ucsd.edu.
[7] ns-3. http://www.nsnam.org.
[8] OpenVZ. http://wiki.openvz.org.
[9] PlanetLab. http://www.planet-lab.org.

[10] QEMU. http://wiki.qemu.org.
[11] Universal TUN/TAP Device Driver.

http://vtun.sourceforge.net/tun.
[12] VirtualBox. http://www.virtualbox.org.
[13] Xen. http://www.xenproject.org.
[14] Y Zheng, D M Nicol, D Jin1 and N Tanaka, A virtual

time system for virtualization-based network
emulations and simulations, Journal of Simulation, 1
June 2012.

[15] Ahrenholz, J., Danilov, C., Henderson, T., and
Kim, J. CORE: A real-time network emulator. In
Military Communications Conference, 2008. MILCOM
2008. IEEE (Nov. 2008), pp. 1–7.

[16] Bavier, A., Bowman, M., Chun, B., Culler, D.,
Karlin, S., Muir, S., Peterson, L., Roscoe, T.,
Spalink, T., and Wawrzoniak, M. Operating
system support for planetary-scale network services.
In Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation -
Volume 1 (Berkeley, CA, USA, 2004), USENIX
Association, pp. 19–19.

[17] Bergstrom, C., Varadarajan, S., and Back, G.
The distributed open network emulator: Using
relativistic time for distributed scalable simulation. In
Principles of Advanced and Distributed Simulation,
2006. PADS 2006. 20th Workshop on (2006),
pp. 19–28.

[18] Borries, K., Judd, G., Stancil, D., and
Steenkiste, P. FPGA-based channel simulator for a
wireless network emulator. In Vehicular Technology
Conference, 2009. VTC Spring 2009. IEEE 69th
(April 2009), pp. 1–5.

[19] Chun, B., Culler, D., Roscoe, T., Bavier, A.,
Peterson, L., Wawrzoniak, M., and Bowman, M.
PlanetLab: an overlay testbed for broad-coverage
services. SIGCOMM Comput. Commun. Rev. 33 (July
2003), 3–12.

[20] Duggirala, V., and Varadarajan, S. Open
network emulator: A parallel direct code execution
network simulator. In Proceedings of the 2012
ACM/IEEE/SCS 26th Workshop on Principles of
Advanced and Distributed Simulation (Washington,
DC, USA, 2012), PADS ’12, IEEE Computer Society,
pp. 101–110.

[21] Girod, L., Stathopoulos, T., Ramanathan, N.,
Elson, J., Estrin, D., Osterweil, E., and
Schoellhammer, T. A system for simulation,
emulation, and deployment of heterogeneous sensor
networks. In Proceedings of the 2Nd International
Conference on Embedded Networked Sensor Systems
(New York, NY, USA, 2004), SenSys ’04, ACM,
pp. 201–213.

[22] Grau, A., Herrmann, K., and Rothermel, K.
Efficient and scalable network emulation using
adaptive virtual time. In Computer Communications
and Networks, 2009. ICCCN 2009. Proceedings of 18th
Internatonal Conference on (Aug. 2009), pp. 1–6.

[23] Grau, A., Herrmann, K., and Rothermel, K.
NETplace: Efficient runtime minimization of network
emulation experiments. In Performance Evaluation of
Computer and Telecommunication Systems
(SPECTS), 2010 International Symposium on (July
2010), pp. 265–272.

[24] Grau, A., Herrmann, K., and Rothermel, K.
NETbalance: Reducing the runtime of network
emulation using live migration. In Computer
Communications and Networks (ICCCN), 2011
Proceedings of 20th International Conference on (Aug.
2011), pp. 1–6.

[25] Gu, Y., and Fujimoto, R. Applying parallel and
distributed simulation to remote network emulation.
In Simulation Conference, 2007 Winter (Dec 2007),
pp. 1328–1336.

[26] Gu, Y., and Fujimoto, R. Performance evaluation
of the rosenet network emulation system. In
Distributed Simulation and Real-Time Applications,
2007. DS-RT 2007. 11th IEEE International
Symposium (Oct 2007), pp. 276–283.

[27] Gupta, D., Vishwanath, K. V., and Vahdat, A.
DieCast: Testing distributed systems with an accurate
scale model. In Proc. of NSDI (2008), pp. 407–421.

[28] Gupta, D., Yocum, K., Mcnett, M., Snoeren,
A. C., Vahdat, A., and Voelker, G. M. To infinity
and beyond: time warped network emulation. In In
ACM Symposium on Operating Systems Principles
(2005).

[29] Hernandez, E., and Helal, A. RAMON:
rapid-mobility network emulator. In Local Computer
Networks, 2002. Proceedings. LCN 2002. 27th Annual
IEEE Conference on (Nov. 2002), pp. 809–817.

[30] Jin, D., Zheng, Y., Zhu, H., Nicol, D. M., and
Winterrowd, L. Virtual time integration of
emulation and parallel simulation. In Proceedings of
the 2012 ACM/IEEE/SCS 26th Workshop on
Principles of Advanced and Distributed Simulation
(Washington, DC, USA, 2012), PADS ’12, IEEE
Computer Society, pp. 201–210.

[31] Kahrs, M., and Zimmer, C. Digital signal
processing in a real-time propagation simulator.
Instrumentation and Measurement, IEEE
Transactions on 55, 1 (Feb. 2006), 197–205.

[32] Kristiansen, S., Plagemann, T., and Goebel, V.
Modeling communication software execution for
accurate simulation of distributed systems. In
Proceedings of the 2013 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation (New
York, NY, USA, 2013), SIGSIM-PADS ’13, ACM,
pp. 67–78.

[33] Law, A. M., and Kelton, D. M. Simulation
Modeling and Analysis, 3rd ed. McGraw-Hill Higher
Education, 1999.

[34] Macker, J., Chao, W., and Weston, J. A
low-cost, ip-based mobile network emulator (MNE). In
Military Communications Conference, 2003. MILCOM
2003. IEEE (Oct. 2003), vol. 1, pp. 481–486.

[35] Mukherjee, J., and Varadarajan, S. Weaves: A
framework for reconfigurable programming.
International Journal of Parallel Programming 33
(2005), 279–305. 10.1007/s10766-005-3591-5.

177

[36] Nicol, D., Jin, D., and Zheng, Y. S3f: The scalable
simulation framework revisited. In Simulation
Conference (WSC), Proceedings of the 2011 Winter
(2011), pp. 3283–3294.

[37] Nicol, D. M. The cost of conservative
synchronization in parallel discrete event simulations.
J. ACM 40, 2 (Apr. 1993), 304–333.

[38] Papanastasiou, S., Mittag, J., Strom, E., and
Hartenstein, H. Bridging the gap between physical
layer emulation and network simulation. In Wireless
Communications and Networking Conference
(WCNC), 2010 IEEE (2010), pp. 1–6.

[39] Picol, S., Zaharia, G., Houzet, D., and El Zein,
G. Hardware simulator for MIMO radio channels:
Design and features of the digital block. In Vehicular
Technology Conference, 2008. VTC 2008-Fall. IEEE
68th (Sept. 2008), pp. 1–5.

[40] Weingärtner, E., Schmidt, F., Heer, T., and
Wehrle, K. Synchronized network emulation:
matching prototypes with complex simulations.
SIGMETRICS Perform. Eval. Rev. 36 (August 2008),
58–63.

[41] Weingärtner, E., Schmidt, F., Lehn, H. V.,
Heer, T., and Wehrle, K. SliceTime: a platform
for scalable and accurate network emulation. In
Proceedings of the 8th USENIX conference on
Networked systems design and implementation
(Berkeley, CA, USA, 2011), NSDI’11, USENIX
Association, pp. 19–19.

[42] Younge, A., Henschel, R., Brown, J., von
Laszewski, G., Qiu, J., and Fox, G. Analysis of
virtualization technologies for high performance
computing environments. In Cloud Computing
(CLOUD), 2011 IEEE International Conference on
(July 2011), pp. 9–16.

[43] Zheng, Y., and Nicol, D. A virtual time system for
openvz-based network emulations. In Principles of
Advanced and Distributed Simulation (PADS), 2011
IEEE Workshop on (2011), pp. 1–10.

[44] Zhou, J., Ji, Z., and Bagrodia, R. Twine: A
hybrid emulation testbed for wireless networks and
applications. In INFOCOM 2006. 25th IEEE
International Conference on Computer
Communications. Proceedings (2006), pp. 1–13.

[45] Zhou, J., Ji, Z., Varshney, M., Xu, Z., Yang, Y.,
Marina, M., and Bagrodia, R. Whynet: A hybrid
testbed for large-scale, heterogeneous and adaptive
wireless networks. In Proceedings of the 1st
International Workshop on Wireless Network
Testbeds, Experimental Evaluation & Characterization
(New York, NY, USA, 2006), WiNTECH ’06, ACM,
pp. 111–112.

178

