
Original Article

The International Journal of High
Performance Computing Applications
2015, Vol. 29(2) 166–183
� The Author(s) 2014
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342014554789
hpc.sagepub.com

High-performance emulation of
heterogeneous systems using adaptive
time dilation

Hee Won Lee, Mihail L Sichitiu and David Thuente

Abstract
Building a testbed for evaluating the performance of large-scale heterogeneous systems can be costly and inefficient.
Emulation is often used to evaluate the performance of a system in a controlled environment. Time dilation allows virtual
machines (VMs) to emulate higher performance than that of their physical machine. We present an approach using adap-
tive time dilation to emulate large-scale distributed systems composed of heterogeneous machines and Operating
Systems (OSs). In our implementation, VMs are globally synchronized. To evaluate our system, distributed VMs running
Linux, Windows, FreeBSD, and Junos are emulated on general-purpose physical machines.

Keywords
Emulation, time dilation, virtual time, virtualization, virtual machines, testbeds, heterogeneous systems, distributed
applications

1 Introduction

Distributed systems rely on the collaboration of a large
number of nodes. Due to complex interactions, their
performance without prototypes is difficult to evaluate.
Diverse techniques, such as theoretical analysis, simula-
tions, testbed implementations, and emulations, have
been used for evaluating their performance.

Theoretical analysis provides elegant solutions for
relatively simple systems (Kleinrock, 1975; Bertsekas
and Gallager, 1992). As long as underlying assump-
tions are reasonably satisfied, the results of the analysis
often offer exceptional insights that cannot be obtained
through any other methods. However, theoretical anal-
ysis frequently requires simplifying assumptions, which
may make meaningful analysis extremely difficult
(Bertsekas and Gallager, 1992). Compared to theoreti-
cal analysis, simulations allow for reasonably conveni-
ent testing, with relatively complex scenarios, while
avoiding overly simplistic assumptions. However, the
accuracy of the simulation results is heavily dependent
on the accuracy of the models employed in the simula-
tion. Subtle changes of parameter values in a simula-
tion model may easily render many simulation results
invalid. Furthermore, the vast majority of simulation
experiments are not repeatable (Pawlikowski et al.,
2002), and the results of each simulation package for a
common scenario can be very different from one

another or from real testbed results (Lucio et al., 2003).
Although testbed measurements offer the most accu-
rate and realistic results, building a testbed is often too
expensive for large systems.

Emulation has been used often over the past decade
because emulation avoids building costly real testbeds
and is more realistic than simulation. Furthermore, to
emulate the system there is no need to code a model for
the system. Several large testbeds such as PlanetLab1

(Chun et al., 2003), Emulab,2 DETERlab,3 and
ModelNet,4 which use emulation techniques or signifi-
cantly depend on them, have been widely used by
researchers.

Emulation enables one physical host (PH) to emulate
multiple virtual hosts (VHs). An unmodified Operating
System (OS) can run on a hypervisor, and unmodified
applications, in turn, can be executed on the unmodi-
fied OS. Emulation based on VHs is useful to make effi-
cient use of computing resources because VHs can be
deployed to maximize the overall utilization of physical

North Carolina State University, Raleigh, NC, USA

Corresponding author:

Hee Won Lee, Department of Computer Science, North Carolina State

University, Raleigh, NC 27695, USA.

Email: hlee17@ncsu.edu

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

resources. However, the results of emulation are com-
promised if PHs run out of resources.

In order to create the illusion of increased resources
in an emulation system based on VHs, an approach to
scaling CPU, network, and disk resources was pro-
posed in DieCast (Gupta et al., 2008). Time scaling,
which allows virtual time to pass at a rate different
from real time, has also been studied with different
methodologies by several research groups (Bergstrom
et al., 2006; Grau et al., 2008; Weingärtner et al., 2008).
Time dilation is a technique to slow the passage of vir-
tual time (from the perspective of a VH) by a specified
factor, which is referred to as time dilation factor
(TDF) (Gupta et al., 2005). With time dilation, physical
resources appear TDF times faster (i.e. higher perfor-
mance is emulated). In VMs, one second of virtual time
passes for every TDF seconds of real time. Therefore,
time dilation enables empirical evaluation at CPU
speeds that are not currently available from production
hardware and larger system emulation on fewer PHs.

DieCast uses a constant TDF, which is suboptimal
for systems with dynamic loads. In contrast, network
emulation using adaptive virtual time (Grau et al.,
2009) dynamically adjusts the clock rate to current sys-
tem loads. The approach in Grau et al. (2009) uses the
concept of epoch-based virtual time (Grau et al., 2008)
where the experiment is divided in epochs, each of
which has a constant TDF. Another paper (Bridges et
al., 2012) also recognizes dynamic time dilation as a
key component of future high-performance computing
systems.

The emulation in Grau et al. (2009) uses OpenVZ5

(Zheng and Nicol, 2011), an OS-level virtualization,
allowing scalability to a few thousand nodes. Therefore,
applications that can be tested in Grau et al. (2009) are
limited to a single OS. In this paper, we propose an
emulation system able to test heterogeneous systems
consisting of distributed nodes running different OSs.
Many Internet applications and services are supported
in different OSs, especially Windows, Mac OS X (based
on FreeBSD), and Linux, and are interconnected by
routers, which are operated by yet different OSs such as
the Cisco IOS and Juniper Junos. Our proposed emula-
tion system can be used to test systems comprising het-
erogeneous OSs. To emulate heterogeneous OSs, we use
Kernel-based Virtual Machine (KVM)6 which supports
full virtualization. Dynamically adapting the scaling
factor to system loads enables our system to accommo-
date a large number of virtual machines (VMs) at scale
with limited resources. To allow for different types of
unmodified OSs we use a hypervisor-level abstraction
for virtual time.

In our evaluation, a video streaming service was cho-
sen to create realistic and scalable system loads on each
OS. This choice allows us to test an application involv-
ing multiple operating systems. Streaming traffic has

the desirable property that it can linearly increase sys-
tem loads over multiple PHs.

The remainder of the paper is organized as follows.
In Section 2, we first discuss requirements for testing
heterogeneous distributed systems. Section 3 presents
our approach for virtual time for the dynamic time
dilation and fast synchronization algorithm. Section 4
introduces our implementation for time adaptation. In
Section 5, we present the evaluation of heterogeneous
systems. Finally, related work in Section 6 is followed
by our conclusions in Section 7.

2 Emulating heterogeneous systems

In order to build a virtual testbed for heterogeneous
systems such that diverse OSs can be used, VMs must
be fully isolated. To allow VMs to run unmodified OSs,
the control of time dilation must be performed at the
level of the hypervisor.

2.1 Full virtualization

Previous emulation systems avoided using full virtuali-
zation in order to use available resources efficiently
because scalability of emulated systems was more
important than complete isolation among VMs. For
example, PlanetLab (Chun et al., 2003) is based on OS-
level virtualization that uses Linux-VServer,7 which cre-
ates many independent containers under a common
Linux kernel. OpenVZ, which also adopts OS-level vir-
tualization, was employed to create virtual nodes in
EMULAB, DeterLab, NETplace (Grau et al., 2010),
NETbalance (Grau et al., 2011), and the other network
emulation studies (Grau et al., 2008, 2009; Zheng and
Nicol, 2011). Lightweight virtual nodes thus have been
widely used for scalable network emulations, but have
the limitation that they all support a single type of OS.
When emulating heterogeneous systems that include
diverse OSs, however, full virtualization is required.
Each VM should have its own hardware resources
including CPUs, memory, file systems, network devices,
etc., such that the VMs can be completely isolated from
one another.

VMware ESX,8 Oracle VirtualBox,9 KVM, and Xen
hypervisor10 are widely deployed hypervisors that sup-
port full virtualization. VMware ESX is under proprie-
tary license and thus modifications of the hypervisor
are limited. A common choice of hypervisor for most
open platforms is Xen. However, for high-performance
computing environments, the KVM hypervisor is rec-
ommended as the optimal choice (Younge et al., 2011).
Xen’s performance lags considerably behind either
KVM or VirtualBox (Younge et al., 2011). Moreover,
in comparison with Xen, the main advantage of KVM
is that each guest runs as a separate process within a
host OS. This allows a user to manage and control the

Won Lee et al. 167

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

VM inside the host through many OS facilities such as
shared memory, interprocess communications (IPCs),
signals, etc. Hence, when controlling VMs, KVM does
not depend exclusively on the interfaces offered by the
hypervisor.

2.2 Abstraction layer of time control

A general-purpose computer offers several hardware
time sources such as programmable interval timer
(PIT), advanced programmable interrupt controller
(APIC), advanced configuration and power interface
(ACPI) timer, real-time clock (RTC), high precision
event timer (HPET), and time-stamp counter (TSC).
An OS that runs on a physical machine commonly
keeps track of time by counting interrupts from the
hardware timer or reading the time-stamp counter,
RDTSC.

While booting, an OS finds all the clock sources
available and uses one of them. The preferred clock
source is TSC since it is a precise and reliable clock
source, but if it is not available, HPET is the second-
best option. In Linux systems, for example, TSC is cho-
sen as a primary clock source and if TSC is unavailable
or becomes unstable, HPET is used instead. In the
absence of TSC and HPET, other options include the
ACPI power management timer (ACPI_PM), PIT, and
RTC. Since PIT and RTC have low resolution, they are
the least preferred; for example, Linux 2.6.32 ranks the
available clock sources as TSC, HPET, and ACPI_PM.

Virtual machines similarly provide their guest OSs
with virtual timers: virtual PIT, virtual RTC, virtual
ACPI timer, virtual HPET, virtual TSC, etc. Modifying
virtual timers allows the manipulation of virtual time,
which may proceed at a rate different from real-world
time. We refer to the scaled time in the guest OS as vir-
tual time.

It is possible to scale time in VHs at different
abstraction levels. At the lowest level it is possible to
modify the guest OS kernel of a VH, but this method is
not sustainable as OS kernel updates may be required
frequently. The method requires implementation for
each OS if different OSs are used in the system. Scaling
virtual timers in the hypervisor is applicable for systems
with heterogeneous OSs because guest OS kernels do
not have to be modified. The most efficient method is,
however, to control the hypervisor time generator,
which is the time source for all virtual timers.
Implementing virtual time at the hypervisor layer has
two important advantages: unmodified heterogeneous
OSs can be used in the system, and no additional appli-
cation programs for virtual time have to be installed on
the VHs.

KVM has a kernel component that enables VHs to
operate at a near-native speed. The KVM kernel com-
ponent also allows VHs to directly use the TSC, APIC,

or PIT from their physical machine. Therefore, when
the kernel component is activated, if a VH uses TSC,
APIC, or PIT as its time source, the virtual time gener-
ated at the hypervisor layer is not used in the VH.
Hence, when using the KVM kernel component, the
kernel component of PIT and APIC should be disabled
for VHs that uses PIT and APIC as their time sources
respectively. KVM has an option (-no-kvm-pit) that
disables the KVM kernel mode PIT and redirects the
physical PIT to the virtual PIT controlled by the hyper-
visor. KVM also has another option (-no-kvm-irq-
chip) that disables the KVM kernel mode PIC/
IOAPIC/LAPIC and redirects the physical APIC to the
virtual APIC. On the other hand, the kernel component
itself should be deactivated for VHs that use TSC, but
the performance will be significantly degraded. To
operate our emulation system at a near-native perfor-
mance, we switch all time sources of VHs to HPET,
ACPI_PM, or PIT if they use TSC, as shown in
Table 1.

3 Adaptive time dilation

Since a physical machine can accommodate a multitude
of VMs, it is possible to build a testing environment for
a large-scale system with limited physical resources.
However, the number of VMs is limited for any physi-
cal machine, due to limited CPU resources. This limita-
tion can be overcome by the introduction of time
dilation, which enables VMs to perceive improved
performance.

A fixed TDF can result in system underutilization.
Adapting time dilation to system loads allows the sys-
tem to effectively utilize its resources.

3.1 Slice-based time dilation

For controlling virtual time for VMs, two distinct
approaches have been used in SliceTime (Weingärtner
et al., 2011) and DieCast (Gupta et al., 2008). The basic
mechanism in SliceTime (Weingärtner et al., 2011) is to
alternately suspend and resume the entire system in
order to connect VMs to discrete event simulations

Table 1. Each OS’s clock source changes to HPETor PIT for
virtual time.

OS Clock source
by default

Clock source
for virtual time

Comment

Linux TSC HPET
(or ACPI_PM)

2

FreeBSD HPET HPET 2
Windows XP PIT PIT 2
Junos TSC PIT HPET

unavailable

168 The International Journal of High Performance Computing Applications 29(2)

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

(Law and Kelton, 1999) that may lag behind in time
under heavy system loads (Weingärtner et al., 2008).
Virtual time stops as VMs are suspended and then
restarts as VMs are resumed. For example, if active
time slices are the same size as inactive ones, virtual
time passes at half the pace of real-world time. The
other approach (introduced in DieCast; Gupta et al.,
2008) is to control how fast virtual time proceeds by
using a TDF, which is the ratio of the rate at which time
proceeds in the physical world to the OS’s perception of
time (Gupta et al., 2005). If TDF is greater than one,
then virtual time passes slower than real time, and vice
versa. Both approaches, as introduced in Weingärtner
et al. (2008, 2011) and Gupta et al. (2005, 2008), are sta-
tic in that the relative ratio between real and virtual
time is fixed for the life of VMs. On the other hand,
NETplace (Grau et al., 2010) and NETbalance (Grau
et al., 2011) use epoch-based virtual time (Grau et al.,
2009) for implementing a dynamic TDF. By setting
TDF to infinity, Grau et al. (2009) effectively suspend
the advance of virtual time; however, since the VMs
continue to run, the results of the emulation may be
unrealistic (as the VMs perceive infinite CPU speed at
infinite TDF).

For dynamic time dilation, we propose slice-based
time dilation, where virtual time is dynamically dilated
and, additionally, as virtual time stops, VMs freeze.
Our approach uses both synchronized emulation
(Weingärtner et al., 2008) and time-warped emulation
(Gupta et al., 2005). In the slice-based time dilation, we
refer to a time slice as an interval during which VMs
are active. In the (n 2 1) th time slice of Figure 1, real
time starts at tR

start(n� 1), while virtual time starts at
tV
start(n� 1). Once the emulation system resumes for the
(n 2 1) th time slice, virtual time starts and the VMs
become active. When the emulation system is sus-
pended, virtual time stops at tV

end(n� 1), freezing VMs.

At this moment, real time is at tR
end(n� 1) and virtual

time does not proceed until the system resumes. As the
system begins for the nth time slice, real time starts at
tR
start(n), but virtual time resumes at the previous point
when virtual time is suspended in the (n 2 1) th time
slice. Consequently, tV

start(n) has the same value as
tV
end(n� 1).
The value of TDF remains constant in a time slice (i.e.

it can change only during a suspension period of the sys-
tem). Virtual time may proceed at a different rate in each
time slice depending on the TDF, whose value is TDF(n)
in the nth time slice. In the (n 2 1) th time slice of Figure
1, virtual time passes faster than real time, whereas it
passes slower in the n th time slice (i.e. TDF(n 2 1) is less
than one, and TDF(n) is greater than one).

Since the value of the starting point of the nth time
slice in virtual time equals the sum of the lengths of all
the previous time slices,

tV
start(n)=

Xn�1

i= 0

DtV (i) ð1Þ

Then given the real time tR, virtual time tV can be
obtained by

tV =
Xn�1

i= 0

DtV (i)+
tR � tR

start(n)

TDF(n)
ð2Þ

3.2 Adaptation of dynamic time dilation to system
loads

Time dilation allows VHs to perceive an increase in the
performance offered by the physical machine. If the
value of TDF is larger than one, a VH perceives its VM
as if it runs on a faster machine. When a PH is over-
loaded, time dilation can alleviate the heavy load.

(n–1)th time slice
TDF(n–1) = 0.5

nth time slice

tR

tRstart
(n–1)

tVstart
(n–1)

tVstart
(n)

tVstart
(n)

tVend
(n–1)

(tR – tRstart
(n))tRstart

(n)

tRend
(n–1)

tV

Figure 1. Illustration of slice-based time dilation.

Won Lee et al. 169

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Therefore, system load changes should be controlled
by corresponding TDF alterations. Since the system
load of a PH changes dynamically, the value of TDF
should be evaluated frequently to allow rapid adapta-
tion to system loads.

If VHs loads overload a PH, the TDF should
increase to provide VHs with the perception of an
improved physical machine, and vice versa. The value
of TDF which is required in a PH to prevent operation
delays in VHs caused by their PH overload is referred
to as required TDF (rTDF). At every moment, each
PH will have their own rTDF, potentially with different
rTDFs for each PH.

In order to synchronize all VHs in the system, virtual
time should pass at the same rate in every VH. For this,
all VHs in the system should use a common system
TDF whose value can adapt to system loads. System
loads change the system TDF, and the changed TDF in
turn affects system loads, as shown in Figure 2. The
TDF controller dynamically adapts TDF to system
loads. Each PH first monitors system loads, which in
turn are used to generate their own rTDF. Each PH’s
rTDF message is then broadcast to the other PHs in
each synchronization interval. The maximum value
among all the rTDFs is selected as a new system TDF
value, because choosing the greatest rTDF guarantees
that VHs which runs on the most heavily loaded physi-
cal machine will operate without lagging due to CPU
resources. TDF changes in turn causes load changes in
the VHs. These load changes are monitored by each
PH in the next monitoring interval.

When a PH evaluates its rTDF, the multi-core CPU
should be taken into consideration because the

unbalanced usage of CPU cores may occur. For exam-
ple, when 100% of a CPU core is utilized and the other
cores are idle, the operations of a VH that uses the most
heavily used core can lag behind while the other VHs
operate without delay. To make certain that all VHs in
a PH operate without delay, the maximum value among
all CPU core loads should be taken as the system load.

On one hand, TDF should adapt to current loads as
rapidly as possible; on the other hand, the frequency of
TDF change should be minimized. In other words, sig-
nificant changes of system loads should be swiftly
reflected in the TDF, but their minor oscillations may
well be ignored. For emulation accuracy, frequent large
changes of the TDF should be avoided, as a large
change may not be applied perfectly simultaneously to
all VHs, leading to a slight timing error in the emulated
components.

To resolve these conflicting requirements, the TDF
controller uses three parameters: a for the exponential
moving average (EMA), Gain, and Insensitivity.

The EMA prevents a change in the current load
(Loadcurrent) from changing rTDF too rapidly. The
EMA value of a system load in a monitoring interval,
denoted by Load(n), is computed as

Load(n)= (1� a) � Load(n� 1)+a � Loadcurrent ð3Þ

Gain determines how rapidly rTDF will adapt to
system loads. If Load(n) is greater than a target load
(Loadtarget), rTDF rises, and vice versa. The magnitude
of the rising or falling is directly proportional to Gain.

Insensitivity minimizes the TDF change unless there
is a larger deviation of Load(n) from Loadtarget. The
required TDF, rTDF(n), is given by

rTDF(n)= rTDF(n� 1)

+Gain � sgn(Load(n)� Loadtarget)�

2 � Load(n)� Loadtarget

Loadtarget

����
����
Insensitivity

ð4Þ

where sgn(x) is the sign of 3 (1 or 2 1), and jxj is the
absolute value of x. The second term in (4) has 2 as a
scaling factor. A load of 50% is a typical target load.
We want the change in the rTDF to be slow when
Load(n) is near the Loadtarget but rapid when it is far
from the Loadtarget. We also want rTDF to be approxi-
mately linear with respect to Gain when Load(n) is
around 75%. The scaling factor 2 in (4) accomplishes
these goals.

Control theory could be brought to bear to design a
controller for maintaining the CPU load on target;
however, the model of the plant is not only not linear,
but also depends on the applications running in the
VHs. Therefore, we will be using a non-linear control-
ler that we will show to work well for a large range of
loads.

rTDF 1

TDF=max(rTDFs) TDF=max(rTDFs) TDF=max(rTDFs)

Load Monitor

rTDF Evaluator

VM 1,1

VM 1,2

VM 1,m

...

TDF

Load 1

Physical Host 1

Load Monitor

rTDF Evaluator

VM 2,1

VM 2,2

VM 2,m'

...

TDF

Load 2

Load Monitor

rTDF Evaluator

VM n,1

VM n,2

VM n,m''

...

TDF

Load n

…

…

…

…

rTDF 2
rTDF n

Loads change

Physical Host 2 Physical Host n

Loads change Loads change

Figure 2. TDF controller.

170 The International Journal of High Performance Computing Applications 29(2)

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

4 System architecture and
implementation

Synchronization agents exchange control messages
(containing rTDFs) to synchronize VHs distributed
over different PHs. Each synchronization agent deter-
mines the system TDF based on received rTDFs, and if
the TDF is changed, each VH immediately applies it.
The TDF controller of the synchronization agent is
tuned so that the rTDF rapidly adapts to system loads,
while avoiding the unnecessary minor changes.

4.1 Synchronization

The current TDFs in VHs must be synchronized
whether they are colocated in a single PH, or are
deployed over multiple PHs. VHs that run on the same
PH are locally synchronized through IPCs based on
shared memory and semaphores, while VHs that are dis-
tributed over different PHs are globally synchronized by
using User Datagram Protocol (UDP) packets. For
local synchronization, hypervisors on the same PH share
a common TDF stored in shared memory, and control
their local virtual time based on this TDF value. rTDF
values computed by each PH using (4) are broadcast via
UDP synchronization messages. Synchronization agents
are used to compute the current TDF stored in the
shared memory and exchange UDP messages.

Figure 3 shows our synchronization method. A syn-
chronization agent periodically generates an rTDF
value and broadcasts it to the other PHs. When receiv-
ing synchronization messages, each synchronization
agent computes a new TDF, which is the maximum of
all recently received rTDFs. Thus, all PHs will have a
common TDF value upon receiving UDP packets from

the other PHs. Virtual time then proceeds at the same
rate with a common TDF value in all VHs. To ensure
timely dissemination of rTDFs, the synchronization
agent periodically generates a new message in a syn-
chronization interval.

VHs running on different PHs can be synchronized
with the granularity of the synchronization interval. So,
for example, when testing on our emulation system
packets’ round-trip time, whose measurement on a real
testbed is less than the synchronization interval, the
interval can appear to be long. As the synchronization
interval decreases, on the other hand, the control mes-
sages increase system loads. It is desirable to minimize
system loads generated by control messages while main-
taining system responsiveness. Hence, a synchroniza-
tion interval should be carefully chosen, depending on
measurement granularity.

Synchronization agents exchange synchronization
messages through TDF control channels, and virtual
nodes communicate with one another through virtual
network channels, as depicted in Figure 3. The isola-
tion of control messages from virtual network traffic
helps to minimize synchronization delay that network
traffic congestion could cause.

Since UDP packets are used for synchronization mes-
sages, their loss may cause synchronization delay, but
synchronization will be rapidly recovered in an interval
by the following synchronization message. We deploy
our PHs on one LAN and synchronization messages
have their own control channels, so there is only a small
chance of synchronization delay. Even if a packet loss
were to occur, since all PHs are in a common broadcast
domain, they will usually lose the packet at the same
time, so all PHs remained synchronized. TCP would
likely have a very large overhead (as it is necessarily uni-
cast vs the UDP broadcast, and requires acknowledg-
ments), and would introduce additional delays.

4.2 Synchronization agent

Our synchronization agent has three threads, as
depicted in Figure 4. The first thread is used to monitor
the system load, compute the rTDF, and periodically
broadcast the rTDF to the other PHs. Each PH broad-
casts their own rTDF. The second thread handles
incoming synchronization messages from the synchro-
nization agents on the other PHs. When a synchroniza-
tion agent receives a synchronization message, it
updates the rTDF for the source host of the message. If
the maximum value of rTDFs is different from the cur-
rent TDF, the TDF change process is triggered in the
third thread. To change the current TDF, the synchro-
nization agent first suspends the operation of all VHs,
renews TDF in the shared memory, and resumes VHs.
All VMs then operate at a new TDF. In order for the
VHs to use virtual time controlled by the

Communication Channel

Legend

Shared MemoryProcess

Shared Memory Access

Guest OS

Hypervisor

Guest OS

Hypervisor

Synchronization Agent

PH

TDF

Guest OS

Hypervisor

Guest OS

Hypervisor

Synchronization Agent

PH

TDF

TDF Control Channel

Virtual Network Channel

Figure 3. The synchronization agent on each PH determines a
current TDF and disseminates it to all VHs on that PH.

Won Lee et al. 171

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

synchronization agent, hypervisors must use the TDF
of the synchronization agent.

4.3 System tuning

The goal of the dynamic TDF controller of the syn-
chronization agent is to rapidly adapt a TDF value to
system loads while avoiding unnecessary changes in
TDF. To achieve this goal we must determine appro-
priate parameter values for a, Gain, and Insensitivity.

To tune the system controller, we apply to a VH a
square load pattern that alternates between heavy and
low CPU load (generated by repeatedly computing ran-
dom numbers) at different duty cycles. The VH directly
offers a certain load to its physical machine. This is the
measured PH system load used to compute the rTDF,
which is broadcast to the other PHs. For the purpose of
system tuning, we use a single VH on the PH, so
rTDF = TDF.

System performance can be judged by changes in the
TDF and CPU loads. Minimizing unneeded TDF var-
iation minimizes changes in TDF across hosts. The
degree of TDF oscillation on any PH can be measured
by the summation of the square of the derivatives:

C1 ¼
XN�1

i¼1

TDFðiþ 1Þ � TDFðiÞ
tðiþ 1Þ � tðiÞ

� �2

ð5Þ

where the summation is computed over a measurement
period with N samples. We refer to C1 as TDF
instability.

System overload can be avoided when the current
PH CPU load Load(i) are close to a target load
Loadtarget (50% in our experiments). The oscillation
degree of PH loads around a target can be quantified
by

C2 ¼
PN

i¼1 ðLoadtarget � LoadðiÞÞ2

N
ð6Þ

where the summation is computed over the same mea-
surement period of N. We refer to C2 as load disturbance
attenuation. A normalized TDF instability �C1 is obtained
by dividing a TDF instability by the mean value of all
TDF instabilities over a measurement period (i.e. 60 s
in our experiments), and a normalized load disturbance
attenuation �C2 is computed by dividing a load distur-
bance attenuation by the mean value of all load distur-
bance attenuations over a measurement period.

The normalized C1 and C2 are components of cost
which are used to minimize TDF changes as system
loads vary. Infrequent and small TDF changes will
have less effect on many OS system calls associated with
the time passage rate. Some system load fluctuation
should be tolerated. Hence, TDF instability is given
more weight than load disturbance attenuation and we
define total cost as

C =wI
�C1 + �C2 ð7Þ

where wI � 1 denotes the weight assigned to TDF
instability.

The weight wI balances the effects of TDF changes
and load response. We choose wI = 10 since the values
of Gain and Insensitivity provide responsive systems
with modest TDF changes. Experiments showed that
wI can vary considerably around 10 without changing
near-optimal system parameters.

Our goal is to find parameters Gain, Insensitivity,
and a that can quickly respond to load changes, and
that move the current load to the target load while still
keeping the TDF changes relatively small and infre-
quent; in other words, minimize the cost function C in
(7). As shown in Figure 2, our TDF controller is a
closed-loop control system where a system load changes
rTDF, and the changed rTDF in turn affects the system
load in (4). Hence, it is extremely complex to find a
minimized total cost C, so we rely on measurement
rather than introducing a model where the expected
value of a linear combination of Gain, Insensitivity, and
a is minimized under a randomized experiment plan.

In order to find near-optimal parameter combina-
tions, we analyze how system stability is related to Gain
and Insensitivity, as shown in Figure 5. The value of a

for EMA is set to 0.125 so that the oscillations caused

Monitor
System
Loads

Broadcast
rTDF

Receive
rTDF

Find max
rTDF

Notify to
Thread 3

Disable virtual
time

Suspend VMs

Renew current
TDF of shared
memory with

new max rTDF

Enable virtual
time

Resume VMs

Wait a
Interval

Thread 2

[notified]

Thread 3Thread 1

[current TDF
!= max rTDF]

[exit]

start

end

Compute
rTDF

Figure 4. Activity diagram of synchronization agent.

172 The International Journal of High Performance Computing Applications 29(2)

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

by frequent minor variations of loads are removed. The
choice a = 0.125 is analyzed at the end of this section.
First of all, square system-load patterns with 10 s
period, shown in Figure 5(a), are applied. TDF
instability and load disturbance attenuation depend
upon Gain and Insensitivity. As shown in Figure 5(e),
TDF instability is very high when Insensitivity \ 2
regardless of Gain. Otherwise, the effect of Insensitivity
is negligible when Insensitivity . ;3. The normalized
load disturbance attenuation gradually increases as
Insensitivity grows regardless of Gain, as shown in

Figure 5(i). For load scenario A, �C1A is minimized
when Insensitivity . 3, whereas �C2A is minimized for
smaller values of Insensitivity. Finally, the total cost
(CA = 10�C1A + �C2A) is depicted in Figure 5(m). Our
goal is to find the combinations of Gain and
Insensitivity that approximately minimize CA.

To accommodate diverse forms of system loads,
we repeat the same analysis for additional system load
patterns: a square pattern with 2 s period, a triangle
pattern with 10 s period, and a triangle pattern
with 2.5 s period. These patterns are shown in

0 20 40 60
0

20

40

60

80

100
Square pattern with 10 second period

Real Time (s)

S
ys

te
m

 L
oa

d
(%

)

(a) Load pattern A

0 20 40 60
0

20

40

60

80

100
Square pattern with 2 second period

Real Time (s)

S
ys

te
m

 L
oa

d
(%

)

(b) Load pattern B

0 20 40 60
0

20

40

60

80

100
Triangle pattern with 10 second period

Real Time (s)

S
ys

te
m

 L
oa

d
(%

)

(c) Load pattern C

0 20 40 60
0

20

40

60

80

100
Triangle pattern with 2.5 second period

Real Time (s)

S
ys

te
m

 L
oa

d
(%

)

(d) Load pattern D

4
8

12
16

20 2
4

6
8

10

0
1
2
3

InsensitivityGain

C
1

A

(e) C 1A

4
8

12
16

20 2
4

6
8

10

0
1
2
3

InsensitivityGain

C
1

B

(f) 1B

4
8

12
16

20 2
4

6
8

10

0
1
2
3

InsensitivityGain

C
1

C

(g) 1C

4
8

12
16

20 2
4

6
8

10

0
1
2
3

InsensitivityGain

C
1

D

(h) 1D

4
8

12
16

20 2
4

6
8

10

0
1
2
3

InsensitivityGain

C
2

A

(i) C 2A

4
8

12
16

20 2
4

6
8

10

0
1
2
3

InsensitivityGain

C
2

B

(j) C 2B

4
8

12
16

20 2
4

6
8

10

0
1
2
3

InsensitivityGain
C

2
C

(k) 2C

4
8

12
16

20 2
4

6
8

10

0
1
2
3

InsensitivityGain

C
2

D

(l) 2D

4
8

12
16

20 2
4

6
8

10

0
2
4
6

InsensitivityGain

C
A

(m) CA =10C 1A + C 2A

4
8

12
16

20 2
4

6
8

10

0
2
4
6

InsensitivityGain

C
B

(n) CB =10C 1B + C 2B

4
8

12
16

20 2
4

6
8

10

0
2
4
6

InsensitivityGain

C
C

(o) CC =10C 1C + C 2C

4
8

12
16

20 2
4

6
8

10

0
2
4
6

InsensitivityGain

C
D

(p) CD =10C 1D + C 2D

0 10 20 30 40 50 60
0
1
2
3
4
5
6
7
8
9

10

TD
F

Gain = 3, Insensitivity = 4

0 10 20 30 40 50 60
0
10
20
30
40
50
60
70
80
90
100

S
ys

te
m

 L
oa

d
(%

)

(q) TDF and system load under
load pattern A

0 10 20 30 40 50 60
0
1
2
3
4
5
6
7
8
9

10

Real Time (s)Real Time (s)

TD
F

Gain = 3, Insensitivity = 4

0 10 20 30 40 50 60
0
10
20
30
40
50
60
70
80
90
100

S
ys

te
m

 L
oa

d
(%

)

(r) TDF and system load under
load pattern B

0 10 20 30 40 50 60
0
1
2
3
4
5
6
7
8
9

10

Real Time (s)

TD
F

Gain = 3, Insensitivity = 4

0 10 20 30 40 50 60
0
10
20
30
40
50
60
70
80
90
100

S
ys

te
m

 L
oa

d
(%

)

(s) TDF and system load under
load pattern C

0 10 20 30 40 50 60
0
1
2
3
4
5
6
7
8
9

10

Real Time (s)

TD
F

Gain = 3, Insensitivity = 4

0 10 20 30 40 50 60
0
10
20
30
40
50
60
70
80
90
100

S
ys

te
m

 L
oa

d
(%

)

(t) TDF and system load under
load pattern D

C

C C

C C

Figure 5. As four patterns of system loads A, B, C, D ((a) to (d)) are offered, the TDF change drives system loads; TDF change is
measured by normalized TDF instabilities �C1A, �C1B, �C1C, �C1D ((e) to (h)) and load change is measured by normalized load disturbance
attenuations �C2A, �C2B, �C2C, �C2D ((i), to (l)); total costs CA,CB,CC,CD ((m) to (p)) are used to find Gain and Insensitivity; a profile of TDF
control over system loads for each system load pattern is shown in (q) to (t), when Gain = 3 and Insensitivity = 4. For all figures
a = 0.125.

Won Lee et al. 173

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Figure 5(b), (c), and (d). Using the same methodology
as for load A, we obtain the total costs CB, CC, CD for
loads B, C, D as shown in Figure 5(n), (o), and (p).

Our goal is to find Gain and Insensitivity that simul-
taneously minimize CA, CB, CC, and CD. When a
threshold of 1.5 is set for total costs, that is, CA \ 1.5,
CB \ 1.5, CC \ 1.5, and CD \ 1.5, the combinations
of (1, 4), (3, 4), (4, 6), (2, 9), and (3, 10) are found, as
shown in Figure 6(a).

Even though it is possible to use any combination
found in Figure 6(a) in term of system stability, we
choose Gain = 3 and Insensitivity = 4, because the
combination not only satisfies the cost threshold, but
also has rapid responsiveness to load changes (larger
Gain and less Insensitivity). Higher Insensitivity
decreases TDF changes, but adapts slower to system
loads.

System loads caused by synchronization messages
should be minimized, subject to responsiveness, so that
VHs can maximize the use of their PH’s computing
resources. When the synchronization agent runs only in
a PH without creating any VHs, the system load
increases as a synchronization message interval
decreases. This can be seen in Figure 6(b). However, if
the synchronization interval 10 ms, the synchroniza-
tion messages do not significantly affect system loads.
Hence, we choose an update period of 10 ms as a rea-
sonable compromise.

System stability depends on a of EMA as well as
Gain and Insensitivity. Smaller a prevents system loads’
large variances from changing TDF too rapidly. As
shown in Figure 7(a), (b), and (c), when
Insensitivity = 1 and Gain increases from 1 to 3, TDF
instability (C1A) increases significantly with a. As seen
in Figure 7(c), (d), (e), and (f), as a decreases and
Insensitivity increases from 1 to 4 where Gain is held at
3, TDF instability rapidly decreases. When Insensitivity
increases to 3 and a decreases to 0.125 in Figure 7(e),
both C1A and C2A become stable. When Gain,

Insensitivity � 3, a = 0.125 stabilizes the system as
seen in the pattern of Figure 7(a) to (f). Values of a

\ 0.125 (i.e. a = 0.0625, 0.0312) also stabilize the sys-
tem, but decrease responsiveness to system load
changes, as shown in Figure 8.

In sum, by using the combination of Gain = 3,
Insensitivity = 4, a = 0.125, and a synchronization
interval of 10 ms, the system can stably operate with
rapid TDF response to dynamic system loads, while
minimizing TDF changes caused by frequent minor
load oscillations.

With Gain = 3, Insensitivity = 4, a = 0.125, and a
synchronization interval of 10 ms, a profile of TDF
control over system loads for each system load pattern
is shown in Figure 5(q) through (t). Under load pattern
A (a square pattern with 10 s), the system loads remain
near-constant on both high and low loads. During
these intervals, the TDF also remains constant, as seen
in Figure 5(q). If system loads change from low to high
loads, TDF rapidly increases and results in reducing
system loads, and vice versa. For the other load pat-
terns, the TDF is controlled in the same fashion.
Figure 5(s) (for a triangle pattern with 10 s period) also
shows that the TDF rapidly follows system load
changes. However, under load pattern D (a triangle
pattern with 2.5 s period), the TDF’s alteration does
not follow the loads’; this test verifies that minor and
rapid load oscillations do not change TDF.

5 Performance Evaluation

The proposed emulation system is tested by creating
distributed VMs and generating streaming traffic, and
the heterogeneity and scalability of the system are
evaluated.

5.1 Experimental setup

Our emulation system is built on five general-purpose
servers (Dell PowerEdge R210). Each PH has four

0 1 2 3 4 5 6 7 8 9 10
0
2
4
6
8

10
12
14
16
18
20

Insensitivity

G
ai

n

(a) CA, CB, CC, CD < 1.5

0 30 60 90
0

10
20
30
40
50
60
70
80
90

100

Real Time (s)

S
ys

te
m

 L
oa

d
(%

)

0.1 MS
1 MS
10 MS
100 MS

(b) No VHs

Figure 6. (a) Candidates of Gain and Insensitivity, and (b) the effect of synchronization message intervals on system loads.

174 The International Journal of High Performance Computing Applications 29(2)

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

CPU cores with hyper-threading. Therefore, each host
OS recognizes eight CPU cores. In our heterogeneity
evaluation, we initially create eight VHs in a PH such
that the load of each VH does not greatly affect the
other VHs that share a PH. Eight or fewer VHs will
have a modest impact on the performance of each
other, while more than eight VHs may significantly
affect the VHs’ performance. In order to test our

system’s scalability, we also load more than eight VHs
in a PH during subsequent evaluations.

Each physical machine has two Gigabit Ethernet
interfaces connected to different switches. The first
interface is used for exchanging synchronization mes-
sages and the second interface is used for building a vir-
tual network. VHs in different PHs communicate
through the second interface.

(a) Gain/Insensitivity=1/1 (b) Gain/Insensitivity=2/1

(c) Gain/Insensitivity=3/1 (d) Gain/Insensitivity=3/2

α
(e) Gain/Insensitivity=3/3

α
(f) Gain/Insensitivity=3/4

0.0312 0.0625 0.125 0.25 0.5 1

101

102

103

104

105

α

C
os

t

TDF Instability C1A
Load Disturb. Attenuation C2A

0.0312 0.0625 0.125 0.25 0.5 1

101

102

103

104

105

α

C
os

t

TDF Instability C1A
Load Disturb. Attenuation C2A

0.0312 0.0625 0.125 0.25 0.5 1
101

102

103

104

105

α

C
os

t

TDF Instability C1A
Load Disturb. Attenuation C2A

0.0312 0.0625 0.125 0.25 0.5 1
101

102

103

104

105

α

C
os

t

TDF Instability C1A
Load Disturb. Attenuation C2A

0.0312 0.0625 0.125 0.25 0.5 1

101

102

103

104

105

C
os

t

TDF Instability C1A
Load Disturb. Attenuation C2A

0.0312 0.0625 0.125 0.25 0.5 1

102

103

104

105

C
os

t

TDF Instability C1A
Load Disturb. Attenuation C2A

Figure 7. Effect of exponential moving average coefficient a on our control system performance

Won Lee et al. 175

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

We employ four different OSs: Linux, FreeBSD,
Windows XP, and Junos,11 to create the VHs. For vir-
tualization, we use and modify the hypervisor of KVM.
KVM’s timer is modified for virtual time, and code for
accessing shared memory (where the TDF is stored) is
added. Table 2 shows details of each software package,
including modified lines of code (LOC).

While booting, each OS by default selects a clock
source: Linux (TSC), FreeBSD (HPET), Windows XP
(PIT), and Junos (TSC). We change the time sources of
Linux and Junos to HPET and PIT respectively, to run
VHs at a near-native speed (i.e. to activate the KVM
kernel component); Junos can only use TSC and PIT.

We want to be able to have virtual time proceed at a
slower rate (as we have seen when the load is heavy) or
at a faster rate when the load is light. The first case cor-
responds to a TDF . 1 and the second case corre-
sponds to a TDF \ 1. If an experiment generates light
system loads, then it can have TDF \ 1 and virtual
time proceeds faster than real time. Thus an experiment
with TDF \ 1 will run on a slower machine but that is
advantageous since it will complete in less real time.

5.2 Emulation accuracy

For testing emulation accuracy, we measure the inter-
ping interval as follows. We set VH1, running on PH1,
to send an Internet Control Message Protocol (ICMP)
echo request packet towards VH2, running on PH2,
every second in virtual time, as depicted in Figure 9(a).
That is, an application running in VH1 sends an ICMP
packet and sleeps for one virtual second. On waking up,
the application sends the next ICMP packet to VH2.

In order to evaluate our system’s emulation time
accuracy under dynamic time dilation, we change the
TDF every 100 ms such that the TDF values create a
sinusoidal wave between 1 and 100, as seen in Figure
9(b). The inter-ping intervals are maintained at approxi-
mately 1 s with less than 2 ms’ variation in virtual time,
as shown in Figure 9(c). When the TDF changes every
10 ms and the interval of sinusoidally changing TDF
further decreases as seen in Figure 9(d), the inter-ping
intervals are still kept around one virtual second with
similar variation, as shown in Figure 9(e).

5.3 Heterogeneity

We use a virtual network as shown in Figure 10 to eval-
uate the heterogeneity of the proposed emulation sys-
tem. The virtual topology has heterogeneous VHs
running Linux, FreeBSD, Windows XP, and Junos
(Juniper network operating system). The Linux server
on PH1 streams video traffic to clients: FreeBSD,
Windows, and Linux on PH3, PH4, and PH5 respec-
tively. Four virtual Juniper routers on PH2 connect the
server and the clients running the Open Shortest Path

0 20 40 60
0

2

4

6

8

10

Real Time (s)

TD
F

0 20 40 60
0

20

40

60

80

100

S
ys

te
m

 L
oa

d
(%

)

(a) α = 0.25

0 20 40 60
0

2

4

6

8

10

Real Time (s)

TD
F

0 20 40 60
0

20

40

60

80

100

S
ys

te
m

 L
oa

d
(%

)

(b) α = 0.125

0 20 40 60
0

2

4

6

8

10

Real Time (s)

TD
F

0 20 40 60
0

20

40

60

80

100

S
ys

te
m

 L
oa

d
(%

)

(c) α = 0.0625

0 20 40 60
0

2

4

6

8

10

Real Time (s)

TD
F

0 20 40 60
0

20

40

60

80

100

S
ys

te
m

 L
oa

d
(%

)

(d) α = 0.0312

Figure 8. TDF and system loads for a = 0.25, 0.125, 0.0625, 0.0312 when Gain = 3 and Insensitivity = 4 under load pattern A.

Table 2. Software packages used in our emulation system.

Linux (PH) ubuntu-10.04-desktop-amd64 Unmodified
Linux (VH) ubuntu-10.04-server-amd64 Unmodified
FreeBSD FreeBSD-9.0-RELEASE-i386 Unmodified
Windows Windows XP SP3 Unmodified
Junos jinstall-12.1R1.9 Unmodified
Hypervisor qemu-kvm-0.13.0 Modified:

307 LOC
Sync. Agent Written from scratch Created:

2196 LOC

176 The International Journal of High Performance Computing Applications 29(2)

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

First (OSPF) protocol. While our system supports dif-
ferent OSs on the same PH, we enforce the separation
of OSs for simplicity and cleaner system evaluation.

System evaluation is done using a video streaming
service similar to the ones offered by Netflix12 and
Hulu.13 The video streaming service loads are approxi-
mately constant in the long term (they do vary slightly
in the short term), and hence, scale linearly with the
number of clients. In our evaluation, we increase the
number of streaming clients up to 24 every minute, thus
increasing the load on all systems.

To model the video streaming service, the virtual
Linux server running on PH1 generates UDP streams
at three data rates: 1.5 Mbps (corresponding to SD
quality), 3 Mbps (DVD quality), and 5 Mbps (HD
quality). The packets are forwarded to the clients by
the Juniper virtual routers. Upon receiving a packet
each client emulates video decoding by computing a
random number a thousand times. In addition to mod-
eling a video streaming service, we also test our emula-
tion system using a real application, the VLC media
player,14 in Section 5.5.

100
50
40
30
20

10

5
4
3
2

1

100
50
40
30
20

10

5
4
3
2

1

(a)

(b) (c)

(e)(d)

Real Time (s) Virtual Time (s)

Virtual Time (s)Real Time (s)

In
te

r-
pi

ng
 In

te
rv

al
s

In
te

r-
pi

ng
 In

te
rv

al
s

Figure 9. In a virtual network topology (a), while TDF sinusoidally changes with a different interval as in (b) and (d), every ICMP
echo packet is sent from VH1 to VH2 after 1 s sleep in virtual time. Independent of TDF changes, the inter-ping intervals are
maintained at about one virtual second in (c) and (e).

Figure 10. A streaming service topology is created for
evaluating heterogeneity.

Won Lee et al. 177

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

To evaluate the scaling of TDF with the offered load
we add one client every virtual minute (first a Windows
client, then a FreeBSD client, then finally a Linux cli-
ent) until there are 24 clients total (eight of each type).
The minimum system TDF is set at 0.01 (i.e. virtual
time passes 100 times faster than real time). The target
CPU load is set at 50%.

Figure 11 shows the rTDF for each of the five PHs
for each of the three considered traffic loads. In
Figure 11(a) at light loads the PH with the Windows
clients experiences the largest CPU loads which drives
the system TDF from 0.01 to about 0.1. As the number

of clients increases, that is, the traffic forwarded by the
routers increases, the load on PH2 (of Junos routers)
increases faster than that of PH4 (of Windows clients),
further driving the system TDF up to one. When the
Linux server generates 3 Mbps flows per connection
(results shown in Figure 11(b)), the PH generating the
largest rTDF changes from the Windows clients (PH4),
to the routing PH (PH2) and eventually to the Linux
server (PH1). The final TDF at full load, that is, 24
3 Mbps streams, is slightly larger than two. Finally,
when the largest streams (5 Mbps, shown in Figure
11(c)) are offered, the Linux server quickly becomes the
system that drives the overall emulation TDF.

The VHs are completely unaware of TDF changes as
they change over one order of magnitude. Figure 12(a),
(c), and (e) shows the total amount of data received by
the FreeBSD clients while the Linux server generates
the packet streams of 1.5 Mbps, 3 Mbps, or 5 Mbps to
its clients.

While TDF is dynamically changing, as shown in
Figure 12(b), (d), and (f), each slope (which represents a
data reception rate) in Figure 12(a), (c), and (e) remains
nearly constant at 1.5 Mbps, 3 Mbps, and 5 Mbps
respectively. This demonstrates that the VH is truly iso-
lated from changes in TDF.

5.4 Scalability

The virtual network topology shown in Figure 13 is
used to evaluate the scalability of our emulation sys-
tem. The Linux server in PH1 generates a stream of
traffic through a Junos router in PH2 to FreeBSD cli-
ents in PH3. PH1 creates system loads by generating
streaming packets, PH2, by forwarding packets, and
PH3, by receiving the packets and emulating video
decoding. Each PH generates rTDFs based on the sys-
tem loads.

In order to evaluate scalability, we increase the VHs
(FreeBSD clients) in PH3, so the rTDF from PH3
drives the system TDF. The Linux server in PH1 sends
a UDP packet stream to all VHs created in PH3. As
the number of VHs increases in PH3, PH3’s system
loads increase accordingly.

As more VHs receive a 3 Mbps stream, PH3 creates
larger rTDF values as shown in Figure 14(a). When
eight VHs are added to the existing eight VHs, the
rTDF increases from 1.7 to 3.2, and when eight more
VHs are added (total 24 VHs), the rTDF climbs to 6.4.
The reason the rTDF increases more from 16 to
24 VHs (3.2) than from 8 to 16 VHs (1.5) is because as
more VHs are packed into a PH, context switching and
sharing I/O resources require more computing time.

When the server hosts 16, 24, and 32 VHs each gen-
erating a 1.5 Mbps stream (total 24, 36, and 48 Mbps
respectively), the rTDF values are shown in Figure
14(b). Compared to the 3 Mbps streaming traffic

0 2 4 6 8 10
10−2

10−1

100

Real Time (min)

rT
D

F

Linux server
Junos routers
Windows clients
FreeBSD clients
Linux clients

(a) 1.5 Mbps streaming

0 5 10 15 20 25
10−2

10−1

100

101

Real Time (min)

rT
D

F

Linux server
Junos routers
Windows clients
FreeBSD clients
Linux clients

(b) 3 Mbps streaming

0 10 20 30 40 50
10−2

10−1

100

101

Real Time (min)

rT
D

F

Linux server
Junos routers
Windows clients
FreeBSD clients
Linux clients

(c) 5 Mbps streaming

Figure 11. rTDF dynamically changes under system loads
generated by streaming traffic; each streaming duration is
24 min in virtual time.

178 The International Journal of High Performance Computing Applications 29(2)

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

shown in Figure 14(a), the 1.5 Mbps streaming traffic
requires a smaller rTDF for the same number of VHs.
Even for 32 VHs, the rTDF is approximately 4.8,
which is smaller than rTDF ’ 6.4 for 3 Mbps 24 VHs.
As shown in Figure 14(c), when we load 32 VHs with
0.5 Mbps of traffic and then increment the traffic load
by 0.5 Mbps, the rTDF increases approximately

linearly with a slightly larger increase for a larger num-
ber of VHs.

5.5 Real-world application: VLC media player

We test a real application, the VLC media player from
VideoLan, on our emulation system. VLC is an open-
source media player that runs on diverse OSs (e.g.
Linux, FreeBSD, Windows, Mac OS X, etc.), and the
player can operate as a streaming server or a streaming
client. For our test, a VLC media player operates as a
streaming server in a virtual Linux server on PH1 and
streams a video file to eight virtual Linux clients on
PH2, each running a VLC media player operating as a
streaming client, as depicted in Figure 15(a).

We evaluate our emulation system using four sample
video files compressed with different codecs and resolu-
tions. A higher video quality requires a larger bitrate,

0 1 4 7 10 13 16 19 22 24
0

100

200

Virtual Time (min)

R
ec

ei
ve

d
D

at
a

(M
B

)

FreeBSD 1
FreeBSD 2
FreeBSD 3
FreeBSD 4
FreeBSD 5
FreeBSD 6
FreeBSD 7
FreeBSD 8

(a) 1.5 Mbps streaming

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Real Time (min)

TD
F

(b) 1.5 Mbps streaming

0 1 4 7 10 13 16 19 22 24
0

100

200

300

400

500

Virtual Time (min)

R
ec

ei
ve

d
D

at
a

(M
B

)

FreeBSD 1
FreeBSD 2
FreeBSD 3
FreeBSD 4
FreeBSD 5
FreeBSD 6
FreeBSD 7
FreeBSD 8

(c) 3 Mbps streaming

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

Real Time (min)
TD

F

(d) 3Mbps streaming

0 1 4 7 10 13 16 19 22 24
0

100

200

300

400

500

600

700

800

900

Virtual Time (min)

R
ec

ei
ve

d
D

at
a

(M
B

)

FreeBSD 1
FreeBSD 2
FreeBSD 3
FreeBSD 4
FreeBSD 5
FreeBSD 6
FreeBSD 7
FreeBSD 8

(e) 5 Mbps streaming

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Real Time (min)

TD
F

(f) 5 Mbps streaming

Figure 12. The data reception rate in virtual time, that is, the slope in (a), (c), (e), remains near-constant and the value is close to
each traffic generation rate (1.5, 3, 5 Mbps), even while TDF is dynamically changing over one order of magnitude; a stream is added
every 3 min in virtual time.

Figure 13. A virtual network topology for evaluating scalability.

Won Lee et al. 179

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

as seen in Table 3. When a single VLC streaming server
broadcasts UDP streams to eight VLC streaming cli-
ents using the sample video files, PH2, running the
VLC streaming clients, is heavily loaded (approaches
100%). Hence, the system load of PH2 drives the sys-
tem TDF. Since higher-quality video streams require
more CPU resources for their decompression, the sys-
tem TDF increases as a video bitrate increases, as
shown in Figure 15.

6 Related work

Time dilation. DieCast (Gupta et al., 2008) scales CPU
cycles, network communication characteristics, and
disk I/O, providing the illusion that each VM matches

a machine from the original service in terms of avail-
able computing resources and communication behavior
to remote service nodes. The behavior of DieCast
therefore matches that of the original service at a frac-
tion of the physical resources. The main limitation of
DieCast is that the scaling factor cannot be changed
during runtime.

When real systems interact with a simulated net-
work, the simulation executes in real time, but there is
no simple solution if the simulation lags behind in time.
Failing to deliver packets in a timely manner generates
corrupted results such as highly increased network
latency or jitter. Instead of real systems, synchronized
network emulation uses VHs in order to be able to syn-
chronize their execution behavior with the network
simulation (Weingärtner et al., 2008). Time in VHs pro-
ceeds only when the synchronization component allo-
cates the next time slice; otherwise, time in VHs remains
stalled. In contrast, when connecting a simulated net-
work to VHs, the approach in Lee et al. (2014) uses
time dilation to reduce simulation delay that occurs due
to the heavily loaded simulator.

0 30 60 90 120

1
2
3
4
5
6
7

Real Time (s)

rT
D

F

VHs: FreeBSD clients

24 VHs
16 VHs
8 VHs

(a) 3 Mbps streaming

0 30 60 90 120

1

2

3

4

5

6

7

Real Time (s)

rT
D

F

VHs: FreeBSD clients

32 VHs
24 VHs
16 VHs

(b) 1.5 Mbps streaming

0 30 60 90 120

1
2
3
4
5
6
7
8

Real Time (s)

rT
D

F

2.0 Mbps
1.5 Mbps
1.0 Mbps
0.5 Mbps

(c) 32 VHs in PH3

Figure 14. Each VH (FreeBSD client) receives a stream of 3 Mbps in (a) or 1.5 Mbps in (b). As the number of VHs increases on
PH3, their rTDF increases accordingly. As the Linux server generates more streaming traffic (0.5, 1, 1.5, and 2 Mbps), the PH
accommodating 32 VHs increases its rTDF as shown (c).

Table 3. Specification of sample video files.

File Resolution Codec Video Bitrate

video1 480p Xvid 1 Mbps
video2 720p H.264 3 Mbps
video3 720p H.264 6 Mbps
video4 1024p H.264 10 Mbps

180 The International Journal of High Performance Computing Applications 29(2)

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

The Distributed Open Network Emulator, or
dONE, employs a temporal model called relativistic
time, which is conceptually the same technique as time
dilation, reconciling the real-time nature of direct code
execution with the event-driven nature of simulation
models (Bergstrom et al., 2006). In addition, dONE
creates VHs using a composition framework called
Weaves, which provides the ability to emulate multiple
instances of an application or protocol stack inside a
single OS process (Mukherjee and Varadarajan, 2005).
In comparison with synchronized network emulation
that runs unmodified OSs as well as unmodified appli-
cations and protocol stacks, dONE allows a VH to exe-
cute only applications and protocol stacks without
modification. The design goal of dONE that uses relati-
vistic time on the Weaves framework is to enhance scal-
ability in building hybrid network emulation/
simulation environment.

The MicroGrid virtualizes network resources using
the MicroGrid network emulator (MaSSF), and com-
pute resources using the MicroGrid CPU controller
(Xia et al., 2004). MaSSF uses a real-time scheduler,
but when the emulated system is too large to be emu-
lated on available hardware, the scheduler runs in a
scaled-down mode. The MicroGrid CPU controller
also supports a scaled-down mode to emulate VMs that
are faster than available physical resources.

Compared to a constant clock rate that results in
suboptimal experiment runtime, network emulation

using adaptive virtual time (Grau et al., 2009) dynami-
cally adjusts the clock rate to system loads. The
approach in Grau et al. (2009) uses the concept of
epoch-based virtual time (Grau et al., 2008) where the
experiment is divided into epochs, each of which has a
constant TDF. TDF adaptation process is based on
threshold-based adaptive sampling of system loads
(Grau et al., 2009).

High-performance virtual machines. The work in
Bridges et al. (2012) provides a high-level framework in
terms of using virtualization in high-performance com-
puting. The work in Cui et al. (2012) closes the gap
between the real and emulated systems by using
receiver-side optimizations (optimistic interrupts and
cut-through forwarding) in real time. Finally, Ibrahim
et al. (2011) considers optimizations for live migration
of VMs in high-performance systems.

Real-time emulation. Common Open Research
Emulator (CORE) deploys a real-time network emula-
tor with a hybrid approach, emulating a network stack
of routers or hosts through virtualization and simulat-
ing the links that connect them together (Ahrenholz et
al., 2008). CORE uses the FreeBSD network stack vir-
tualization provided by the VirtNet15 project. The
lightweight virtualization, where only part of the OS is
made virtual, allows CORE to scale to over a hundred
VMs running on a single emulation server. For wireless
emulation, CORE focuses on realistic emulation of
layer 3 and above, and does not model layer 1 and 2 of
a wireless medium such as 802.11.

Wireless channel emulators use hardware to simulate
wireless channel propagation in real time. The reason
for using hardware is that emulation must be fast to
operate in real time, flexible to capture many different
environments, and accurate to ensure that the radio sig-
nals are not distorted. There are a number of such wire-
less emulators (Kahrs and Zimmer, 2006; Picol et al.,
2008), including the Field-Programmable Gate Array
(FPGA)-based channel simulator (Borries et al., 2009).

RAMON, a rapid-mobility network emulator, is a
software/hardware emulator that mimics realistic char-
acteristics of wireless networks (Hernandez and Helal,
2002). RAMON allows the ns-2 simulator to interact
with actual hardware components including access
points (APs), attenuators, laptops, and smart phones,
while emulating mobility in wireless networks.

Mobile Network Emulator (MNE) focuses on simu-
lating mobility of wireless nodes, each of which is rep-
resented by a single physical device such as a laptop
computer (Macker et al., 2003). Each device has two
interfaces: one is used as a mobile emulation control
channel and the other works as an emulated wireless
interface. Information about topology changes are
transmitted through the control channel and each node
then sets or removes rules of its own ‘iptables’ accord-
ing to the control information. Since it operates in a

Real Time (s)
(b)

(a)

Figure 15. (a) A virtual network topology for evaluating the
VLC media player that runs on our emulation system; (b) Higher
video bitrates imply larger TDF.

Won Lee et al. 181

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

real-time environment, MNE uses simplistic propaga-
tion models that do not require significant amounts of
processing, so MNE is applicable mainly for testing the
protocols at layer 3 and above.

Large testbed. Several large testbeds, which partially use
emulation techniques or significantly depend on them, have
been developed. PlanetLab is a geographically distributed
overlay network designed to support the deployment and
evaluation of planetary-scale network services (Bavier et al.,
2004). PlanetLab enables multiple services to run concur-
rently, each in its own slice of PlanetLab (Chun et al.,
2003). Emulab provides researchers with integrated access
to emulated PC nodes, an 802.11 a/b/g testbed, and univer-
sal software defined radios (Universal Software Radio
Peripheral devices). Additionally, Emulab can be expanded
into PlanetLab testbeds, enabling live Internet experimenta-
tion. Global Environment for Network Innovations
(GENI)16 is an National Science Foundation (NSF) initia-
tive that supports at-scale experimentation on shared and
heterogeneous infrastructure. GENI provides researchers
across the country with collaborative environments on
which new network architectures and their implementations
can be tested. DETERlab is a testbed designed to support
research and development on next-generation cyber security
technologies. DETERlab uses the Emulab cluster testbed
software that allows for controlling and managing a pool
of PC experimental nodes that are interconnected in a net-
work topology for testing. ModelNet emulates packet
delays/losses/throughput of packets flowing between differ-
ent instances of applications.

7 Conclusion

In this paper we presented a new heterogeneous system
emulator based on virtual time featuring an adaptive
TDF. The system emulates VMs by using a slightly
modified KVM virtualization, allowing for heteroge-
neous VHs to be integrated in the same emulation. The
experimental evaluation shows that the system scales
well to a large number of VHs even when only a few
physical machines are used to host the virtual systems.
With a 1 Gbps backplane, a synchronization interval
of 10 ms, five PHs, and our synchronization packet size
of 60 B, the control channel utilization is just 0.024%
and it is not a serious limitation. In conclusion, the sys-
tem can be expanded to a large PH cluster and can be
used to evaluate the performance of large-scale hetero-
geneous systems without having to build large, expen-
sive, and custom testbeds.

Funding

This research received no specific grant from any funding
agency in the public, commercial, or not-for-profit sectors.

Notes

1. See http://www.planet-lab.org.
2. See http://www.emulab.net.
3. See http://www.isi.deterlab.net.
4. See http://modelnet.ucsd.edu.
5. See http://wiki.openvz.org.
6. See http://www.linux-kvm.org.
7. See http://linux-vserver.org.
8. See http://www.vmware.com.
9. See http://www.virtualbox.org.
10. See http://www.xenproject.org.
11. See http://www.juniper.net/products/junos and http://

juniper.cluepon.net/index.php/Olive.
12. See http://netflix.com.
13. See http://hulu.com.
14. See http://videolan.org.
15. The FreeBSD Network Stack Virtualization Project,

http://imunes.tel.fer.hr/virtnet.

16. See http://www.geni.net.

References

Ahrenholz J, Danilov C, Henderson T, et al. (2008) CORE: A

real-time network emulator. In: Military communications

conference, pp. 1–7.
Bavier A, Bowman M, Chun B, et al. (2004) Operating system

support for planetary-scale network services. In: Proceed-

ings of the 1st conference on networked systems design and

implementation – volume 1, Berkeley, CA.
Bergstrom C, Varadarajan S and Back G (2006) The Distrib-

uted Open Network Emulator: Using relativistic time for

distributed scalable simulation. In: 20th workshop on prin-

ciples of advanced and distributed simulation, pp. 19–28.
Bertsekas DP and Gallager R (1992) Data Networks. 2nd edn.

Englewood Cliffs, NJ: Prentice Hall.
Borries K, Judd G, Stancil D, et al. (2009) FPGA-based chan-

nel simulator for a wireless network emulator. In: IEEE

69th vehicular technology conference, pp. 1–5.
Bridges PG, Arnold D, Pedretti KT, et al. (2012) Virtual-

machine-based emulation of future generation high-

performance computing systems. International Journal of

High Performance Computing Applications 26(2): 125–135.
Chun B, Culler D, Roscoe T, et al. (2003) PlanetLab: An

overlay testbed for broad-coverage services. SIGCOMM

Computer Communication Review 33: 3–12.
Cui Z, Xia L, Bridges PG, et al. (2012) Optimizing overlay-

based virtual networking through optimistic interrupts

and cut-through forwarding. In: Proceedings of the inter-

national conference on high performance computing, net-

working, storage and analysis, Los Alamitos, CA.
Grau A, Herrmann K and Rothermel K (2009) Efficient and

scalable network emulation using adaptive virtual time.

In: Proceedings of the 18th international conference on com-

puter communications and networks, pp. 1–6.
Grau A, Herrmann K and Rothermel K (2010) NETplace:

Efficient runtime minimization of network emulation

experiments. In: 2010 international symposium on perfor-

mance evaluation of computer and telecommunication sys-

tems, pp. 265–272.

182 The International Journal of High Performance Computing Applications 29(2)

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Grau A, Herrmann K and Rothermel K (2011) NETbalance:
Reducing the runtime of network emulation using live
migration. In: Proceedings of the 20th international confer-

ence on computer communications and networks (ICCCN),
pp. 1–6.

Grau A, Maier S, Herrmann K, et al. (2008) Time jails: A
hybrid approach to scalable network emulation. In: 22nd
workshop on principles of advanced and distributed simula-

tion, pp. 7–14.
Gupta D, Vishwanath KV and Vahdat A (2008) DieCast:

Testing distributed systems with an accurate scale model.
In: Proceedings of NSDI, pp. 407–421.

Gupta D, Yocum K, McNett M, et al. (2005) To infinity and
beyond: Time-warped network emulation. In: ACM sym-

posium on operating systems principles.
Hernandez E and Helal A (2002) RAMON: Rapid-mobility

network emulator. In: 27th annual IEEE conference on

local computer networks, pp. 809–817.
Ibrahim KZ, Hofmeyr S, Iancu C, et al. (2011) Optimized

pre-copy live migration for memory intensive applications.
In: Proceedings of the 2011 international conference for high
performance computing, networking, storage and analysis.

Kahrs M and Zimmer C (2006) Digital signal processing in a
real-time propagation simulator. IEEE Transactions on

Instrumentation and Measurement 55(1): 197–205.
Kleinrock L (1975) Queueing Systems Volume 1: Theory. New

York, NY: Wiley.
Law AM and Kelton DM (1999) Simulation Modeling and

Analysis. 3rd edn. New York, NY: McGraw-Hill Higher
Education.

Lee HW, Thuente D and Sichitiu ML (2014) Integrated simu-
lation and emulation using adaptive time dilation. In: Pro-
ceedings of the 2nd ACM SIGSIM/PADS conference on

principles of advanced discrete simulation, New York, NY,
pp. 167–178.

Lucio GF, Paredes-Farrera M, Jammeh E, et al. (2003)
OPNET modeler and ns-2: Comparing the accuracy of
network simulators for packet-level analysis using a net-
work testbed. In: 3rd WEAS international conference on

simulation, modelling and optimization (ICOSMO), pp.
700–707.

Macker J, Chao W and Weston J (2003) A low-cost, IP-based
mobile network emulator (MNE). In: Military communica-

tions conference, pp. 481–486.
Mukherjee J and Varadarajan S (2005) Weaves: A framework

for reconfigurable programming. International Journal of
Parallel Programming 33: 279–305.

Pawlikowski K, Jeong HDJ and Lee JSR (2002) On credibil-
ity of simulation studies of telecommunication networks.
IEEE Communications Magazine 40: 132–139.

Picol S, Zaharia G, Houzet D, et al. (2008) Hardware simula-

tor for MIMO radio channels: Design and features of the
digital block. In: IEEE 68th vehicular technology confer-

ence, pp. 1–5.
Weingärtner E, Schmidt F, Heer T, et al. (2008) Synchronized

network emulation: Matching prototypes with complex
simulations. SIGMETRICS Performance Evaluation

Review 36: 58–63.

Weingärtner E, Schmidt F, Lehn HV, et al. (2011) SliceTime:
A platform for scalable and accurate network emulation.
In: Proceedings of the 8th USENIX conference on net-
worked systems design and implementation, Berkeley, CA.

Xia H, Dail H, Casanova H, et al. (2004) The MicroGrid:
Using online simulation to predict application perfor-
mance in diverse grid network environments. In: Proceed-
ings of the second international workshop on challenges of
large applications in distributed environments, pp. 52–61.

Younge A, Henschel R, Brown J, et al. (2011) Analysis of vir-
tualization technologies for high performance computing
environments. In: 2011 IEEE international conference on
cloud computing (CLOUD), pp. 9–16.

Zheng Y and Nicol DM (2011) A virtual time system for
OpenVZ-based network emulations. In: Proceedings of the
2011 IEEE workshop on principles of advanced and distribu-
ted simulation, Washington, DC.

Author biographies

Hee Won Lee is a Ph.D. candidate in the Department
of Computer Science at North Carolina State
University. He received his Bachelor of Engineering
from Korea University in 2002, and Master of
Software Engineering from Carnegie Mellon
University in 2005. He worked for KT Corporation as
a research engineer in 2002-2009. He also worked for
AT&T Labs Research as an intern during the 2014
summer. His research interests include networking and
storage systems, distributed and cloud computing, high
performance computing, and network simulation.

Mihail L. Sichitiu received his B.E. and an M.S. in
Electrical Engineering from the Polytechnic University
of Bucharest in 1995 and 1996 respectively. In May
2001, he received a Ph.D. degree in Electrical
Engineering from the University of Notre Dame. He is
currently employed as a professor in the Department
of Electrical and Computer Engineering at North
Carolina State University. His primary research inter-
est is in Wireless Networking.

David J. Thuente received a Summa Cum Laude
Honors B.S. degree in Mathematics from Loras
College. He received his MS and Ph.D. degrees from
the University of Kansas. He is currently Professor of
Computer Science at North Carolina State University.
He has done extensive consulting in sonobuoy signal
processors and networking protocols and applications
for Magnavox Electronic Systems Company. He has
also done network consulting for Hughes Systems
Company and Raytheon among others. He is a
Professor Emeritus of Purdue University. His primary
research area is networking.

Won Lee et al. 183

 at FLORIDA INTERNATIONAL UNIV on June 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

