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Abstract—In today’s data centers, storage hardware is getting
virtualized and shared across multiple tenants. The storage
virtualization is expected to significantly increase resource uti-
lization, and consequently provide infrastructure providers with
tremendous cost savings. In a shared environment, however,
demanding tenants can severely impact the IO performance of
co-located tenants. Therefore, in order to properly materialize
expected benefits, it is important to provide virtualized IO
traffic with performance isolation and a certain level of assured
performance. Unfortunately, most prior work typically provided
partial solutions by focusing on a single performance bottleneck,
e.g., IO scheduler. In this paper, we present the design and
implementation of MIST that can significantly mitigate the
impact of IO performance interference. To achieve the goal,
we devise a novel interference detection metric, Icpu, and use a
collection of control mechanisms that exploit the knobs provided
by modern operating systems. Through the evaluation based on
our MIST prototype, we demonstrate that MIST can provide
effective protection for IO traffic against a wide range of
interfering workloads. Moreover, we show that MIST has low
performance overhead for its control actions.

I. INTRODUCTION

The demands for cloud storage space is rapidly growing.

A market forecast report, for instance, predicted that storage

traffic related to personal content is expected to increase from

1.7 EB (ExaByte) in 2012 to 20 EB in 2017 [1]. To meet

the future demand, both industry and academia have paid

attention to virtualization technologies. With virtualization,

compute resources and storage space can be shared across

multiple tenants and the resource will be provisioned to tenants

much faster than before, e.g., in the order of minutes/hours

rather than weeks/months. Therefore, cloud service providers

anticipate the higher resource utilization of underlying infras-

tructure.

When the infrastructure is virtualized, however, it is impor-

tant for the providers to ensure strong performance isolation

among tenants because they can interfere one another in

a disastrous way. Moreover, today’s cloud providers often

oversubscribe system resources to maximize overall utiliza-

tion [24], [19], which makes this problem even more difficult.

At the same time, guaranteed bandwidth and/or latency is also

important for many performance critical applications.

Storage traffic, the focus of this paper, has more complex

dynamics compared to network traffic. Once IO requests are

generated inside a VM, they will travel across many software

layers including the guest operating system’s IO stack, the

hypervisor, the host operating system’s IO stack, and then

go through the networking stack if the storage medium is

remotely placed. Each layer consumes system resources –

CPU, IO scheduler, and network – and these resources are

shared across multiple tenants. If not carefully managed, the

co-located IO traffic will be interfering one another and cause

significant performance degradation. Numerous evidences can

be found in the literature [23], [11], [14], [12], [32], [2], [7],

[22], [28].

Then how should we deal with the interference problem for

storage traffic in today’s data centers? It is a very challenging

problem as identified by many researchers. One of the impor-

tant reasons is that the design principles of modern operating

system components, e.g., process scheduler, have evolved in a

way that encourages the higher utilization of system resources

rather than dedicating resources to a certain process. In a cloud

setting, this makes the providers inherently hard to proactively

reserve CPU/IO/network resources for a specific tenant. When

a proactive reservation is not possible for a tenant, an alterna-

tive approach may take a reactive adaptation strategy based on

runtime characteristics of the system. However, it requires two

mechanisms: a) a mechanism to detect the resource contention

and b) a mechanism to eliminate the interference without

affecting the reservations of other VMs in the same host. What

makes the task more difficult is that there are no explicit

translation rules between application metrics (IOPS/latency)

and system resources (CPU, IO scheduler, interrupts, etc.).

Unfortunately, the state-of-the-art techniques in this problem

space either focus on a disk scheduler [11], [12] or assume

that there already exists a mechanism to provide a guaranteed

performance for storage traffic [32]. For the former, if inter-

ference is caused by a different system resource, e.g., other

than disk scheduler, it is not clear how they can protect the

traffic. The latter case is specific to a proprietary platform and

its protection mechanisms are not exposed to the community.

In this paper, we devise a collection of techniques that can

be used to mitigate the impact of interference for storage traffic

and present the design and implementation of MIST. MIST

can alleviate contentions on multiple system resources such

as CPU, storage block, and network. For CPU contention,

MIST accurately detects the interference using a carefully

designed metric, called Icpu, and prioritizes VMs using the

realtime scheduler to eliminate the contention. In case of the

block layer, MIST proportionally allocates resources using

the Linux CFQ IO scheduler available in Linux. Moreover,

MIST introduces a mechanism to reduce the impact of network

interrupts against storage traffic by leveraging CPU affinity in

order to segregate CPU cores for network interrupt processing

from CPU cores for scheduling vCPUs of IO generating VMs.

The paper makes the following contributions. First, we

explored the problem space and investigated the IO dynamics
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with/without resource contention. Based on the observations,

we devise a novel metric, Icpu, that can accurately detect

interference and compare it to an existing metric such as VM

scheduling latency (§III). Second, we develop a set of control

mechanisms in order to properly handle contention in each sys-

tem resource. For instance, we use real-time (RT) scheduling

to mitigate the impact of CPU interference and control CPU

mapping for interrupt handling to alleviate the interference

caused by network traffic (§IV). Third, we describe the design

and implementation of MIST system and present evaluation

results based on the prototype implementation (§IV and §VI).

II. GOAL AND SCOPE

Goal. Our goal is to achieve the highest possible utilization

of resources in virtualized data centers, while still providing

QoS guarantees to VMs of interest. If the infrastructure

provides guaranteed performance, it is naturally desirable to

oversubscribe resources, i.e., accommodate as many VMs as

possible in a given host. In practice, a today’s virtualization

platform provides a set of knobs to oversubscribe resources. As

an example, one can configure more number of vCPUs than the

number of physical cores available to the machine. In practice,

the ratio of physical cores to vCPUs is ranging from 1:6 to

even 1:16 [24], [19]. While the oversubscription of system

resources is maximizing resource utilization, it also makes per-

formance isolation and QoS guarantees even more important.

Under the oversubscribed host machine (the machine where

VMs are running), we consider that two types of VMs could

exist at a given time; VMs with IO throughput reservations

and/or VMs that have no reservations. The former needs a

protection from demanding VMs co-located on the same host.

The latter runs as a best-effort manner and will tolerate some

performance degradation when interference occurs.

Scope. For storage system configuration, we assume a vir-

tualized data center environment where compute VMs are

physically separated from the location of storage volumes.

These volumes are typically connected through SAN (Storage

Area Network) technologies such as iSCSI, Fibre Channel, etc.

Under the configuration, the storage path will have complex

dynamics because it passes through not only many hardware-

and software-layers on the host but also network, middleboxes,

remote storage system’s front-end, and reaches to the storage

backend media. Each layer could be shared by multiple

tenants. In this paper, our focus lies in mitigating the impact of

host-side interference and leave end-to-end QoS enforcement

as future work. In terms of performance metric, this paper

particularly focuses on IO throughput.

Our Position. When we try to maximize system utiliza-

tion (and consequently to reduce cost) by oversubscribing

resources, the importance of QoS enforcement becomes more

salient. In other words, it is generally desirable to run as

many VMs as possible at a given host as long as they do not

violate QoS requirements. However, the design goal of modern

operating systems, e.g., Linux, which are popular in data cen-

ter environments, deviates somewhat from QoS provisioning.

Rather than allocating dedicated resources to a few processes,

it evolves its control mechanism to balance the loads across

multiple processors and/or to get higher system utilization.

For example, Linux process scheduler can preempt running

processes in order to perform load balancing operation. MIST

tries to carry out QoS enforcement in such an environment.

Under this circumstance increases the importance of dynamic

detection of interference and proper isolation mechanisms

(§III and §IV). In this paper, we aim to deliver a practical

solution to mitigate the impact of interferences in the context

of oversubscribed cloud environment.

III. IO DYNAMICS AND RESOURCE INTERFERENCE

In this section, we conduct a measurement study to better

understand the problem space and discuss how IO performance

metrics are affected by workload changes and resource con-

tention. We devise a novel metric that can more accurately

detect CPU interference than existing alternatives, e.g., task

scheduling latency provided by perf tool in Linux.

Measurement Setup. For the measurement study, we use two

different machines that can capture low-end consumer class

servers (LE) and high-end enterprise class servers (HE). LE

server is a Dell PowerEdge R210 server with 8 physical cores

– Intel Xeon CPU X3460 2.80 GHz, a quad-core CPU with

hyperthreading – and 16 GB of main memory and 8 MB

cache. The machine is backed by a Samsung 830 Series 128

GB SSD disk with 256 MB built-in cache. HE server is a

Dell PowerEdge R820 with 64 physical cores – Intel Xeon

CPU E5-4620 2.2GHz, 4 x 8-core CPUs with hyperthreading

– and 128 GB of memory with NUMA (Non-Uniform Memory

Access) architecture. Each cell (or socket) has 256K, 2M,

and 16M of caches for L1, L2, and L3 respectively. A Dell

PowerVault MD3600f disk array with 12 HDDs is attached

to the host via 8Gb Fibre Channel. The 12 magnetic hard

drives are configured as RAID-6. The HE machine additionally

has three local hard disks configured as RAID-5. For host

operating system, we use Ubuntu server 12.04 LTS. The KVM

hypervisor with virtio IO driver is set for all experiments. In

each experiment, there are one VM generating IO traffic using

the FIO workload generator [10] and separate VMs interfering

the IO traffic. FIO is a widely used IO load generator and

provides a set of control knobs: IO type, block (or request)

size, the number of jobs, the number of concurrent IO requests

(called IO depth), control r/w ratio, IO engine, e.g., sync or

async, etc. It also provides related statistics such as throughput

(in IOPS and bandwidth) and latency. To collect data, we use

several system monitoring tools available in Linux (iostat, top,

htop, mpstat, pidstat, and sar.).

For CPU interference experiments, we measure IOPS (IO

operations per second) and bandwidth (Megabytes per sec-

ond). A VM generates a sequential read traffic with different

intensity, i.e., varying number of IO depth. Note that the host

operating system controls the IO request size based on the

IO demand internally. As shown in Fig. 1(a), if the workload

exceeds a certain threshold, the operating system aggregates

incoming requests and batches them in order to maximize

bandwidth usage. This control decision trades off latency
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Fig. 1. IO dynamics with/without CPU Interference in HE (of 16 physical cores in a NUMA cell). “Baseline” means that there is no
interfering workload when IO operations are performing. “n vCPUs” means that the interfering workload is using n vCPUs fully with n ×
100% CPU utilization. Throughput in IOPS and BW could be degraded up to 40%.
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Fig. 2. CPU interference metrics (Icpu). Performance degradation
was not found until 6 vCPUs’ interference in LE and 12 vCPUs’
interference in HE.

against increased bandwidth usage as shown in Fig. 1(b) and

Fig. 1(c) respectively. In Fig. 1(d), IOPS increases until IO

depth reaches 128∼256 and decreases beyond those points.

Those transition points can be different along with the different

degree of interference. Similar observation is made with an

experiment with LE server 1.

CPU Interference.
1) Methodology & Baseline Results.: To understand the

interfering behavior of VMs, we use our own workload

generator. Our custom workload generator executes ‘while’

loop while generating one random number per cycle. It can

take the number of vCPUs as input and saturate the capacity

of the configured number of physical cores. To see the impact

of interference, we increase CPU loads generated by the

workload generator to the point that fully saturates the capacity

of available physical cores, i.e., 800% for LE and 6400% for

HE. We use all eight CPU cores available for the experiment

on LE server. However, for HE server, we take one NUMA

cell (16 physical cores) among four for our experiments2.

Figure 1 shows that CPU contention can degrade IO perfor-

mance up to 40% in HE. (The performance degradation in LE

was similar.) This result demonstrates how CPU interference

can degrade IO performance. When malicious tenants can act

just like our load generator, another tenant could experience a

significant decrease in IO performance.

1In LE, transition points spread out IO depths ranging from 16 to 64.
2In NUMA architecture, inter-cell interference due to the CPU resource is

rarely occurred since each cell has a dedicated memory hierarchy, i.e., its own
caches and memory space.
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Fig. 3. Comparison of interference metrics: Icpu and task scheduling
latency. “Baseline” means no interference case.

2) Detecting Interference with Icpu: Accurately detecting

interference takes an important role in a control system such as

MIST. Inaccurate policy enforcement may result in inefficient

resource allocation, so the overall system resources could be

underutilized. To detect interference, we developed a novel

metric that can detect CPU interference accurately. The metric,

called Icpu, can be described as follows.

Icpu =
Nnvc

Nvc
(1)

where Nnvc is the number of non-voluntary (or involuntary)

context switches and Nvc is the number of voluntary context

switches.

a) Why Icpu Works: If a VM makes sufficient IO re-

quests, the number of voluntary context switches are high

due to the frequent invocation of IO-related system calls.

When performance degradation happens, a running process is

more likely to yield CPU involuntarily. During our empirical

evaluation (Fig. 2), we realized that the ratio between two

types context switches (i.e., Icpu) reflects the existence of

interference very well. We can experimentally find a threshold

on Icpu to detect interfering behavior (we use 0.05 as our

threshold for our prototype implementation). When using the

metric, we exclude the cases if the total number of context

switches (= Nvc + Nnvc) is too small (i.e., the VM is idle)

where Icpu falsely indicates the interference.

b) Why not use existing metrics?: Some hypervisor im-

plementations provide explicit information on compute re-

source contention such as VM scheduling latency, i.e., the

amount of time a runnable VM’s vCPU remains queued before

being dispatched to execute on a physical processor (a.k.a.

“ready time”). VMWare provides information on ready-time

and the recent version of Hyper-V by Microsoft provides a
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similar counter. Similarly, Linux provides task scheduling la-

tency. Since our environment is based on Linux, we compared

Icpu with task scheduling latency and the result is reported in

Fig. 3. We found that task scheduling latency was not able

to detect a crucial case – VM with one vCPU – while Icpu
was robust irrespective of the number of vCPUs. VMs with a

single vCPU are perhaps most common in cloud environments.

In this experiment, we vary the number of vCPUs for an

IO generating VM, while running an interfering VM with 8

vCPUs that utilizes almost all the CPU cycles (≈ 800%).

Bottleneck at IO Scheduler. IO scheduler could be another

source of bottleneck for block storage performance in a virtu-

alized environment. Block storage volumes and VMs can form

either one-to-one or one-to-many mapping. For the former case

where a single VM is connected to a given volume, there are

no contenders that share IO scheduler for the volume on the

host. Thus, the interference will occur out of the IO scheduler’s

regime. For the latter case where multiple VMs are sharing a

volume, multiple VMs may contend one another on a single IO

scheduler. In this case, the interference needs to be explicitly

handled on the scheduler (§IV).

Interrupt Processing. When the Linux kernel processes hard-

ware interrupts generated by network or block IO operations,

it is next processed by softirq mechanism [35]. However,

network operations (send/recv) have a higher priority than

block IO operations, and thereby IO performance will be

greatly affected if a large number of network requests are

co-located with the same CPU. Since the priorities of softirq

entries are static (hard-coded in the Linux kernel), there is no

easy way to change it out of box. We developed a practical

mechanism (§IV); in this paper, however, this problem might

be further mitigated using more involved techniques such

as [21], [18].

Factors that are not included. In this study, we exclude

network outside of the host since our focus is host-side IO

traffic protection. Apparently, when enforcing end-to-end IO

bandwidth reservation, the system requires a mechanism that

can ensure protection on the network between the host and

the storage backend. Regarding the issue, there exists an ex-

tensive body of work in SDN (Software-Defined Networking)

literature and will be complementary to our work for future

development. Additionally, IO performance could be restricted

by other hardware components such as interconnects like PCIe,

available memory bandwidth, etc. For these components, more

sophisticated control might be necessary to achieve similar

impact. For instance, Majo et al. [20] argues that, in order to

optimize performance due to memory bandwidth, the system

needs to handle data locality and cache contention simul-

taneously and implements a user-mode extension to Linux

scheduler to achieve the goal. MIST system does not explicitly

address potential issues on these components.

IV. SYSTEM DESIGN

Architecture Overview. Figure 4 shows the software archi-

tecture of MIST system. It is composed of four components:

REST-API, admission controller, enforcer, and performance
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Fig. 4. MIST System Architecture

monitor. The REST-API component will receive a REST API

request from a MIST user. The request contains a storage

policy, e.g., bandwidth reservation request. Then the admission
controller will decide whether to accept the request or not

based on the current capacity and reserved resources. The

admission controller will look up its database to see whether

there is remaining capacity and make a decision. To make

a correct decision, MIST system accounts available system

resources. If the request is admitted, the enforcer will actually

enforce the rule to a appropriate place, e.g., set an upper

limit to a specific block device in cgroup pseudo file system,

etc. Lastly, the performance monitor will periodically collect

various performance statistics and, based on the information,

it may trigger control actions to the enforcer if it observes

both lower performance (less than the reserved amount) and

resource contention (interference) simultaneously.

In many cases, interfering behavior could be transient.

When there is no interference, MIST encourages using default

control mechanisms built in Linux. Only when the system

does not meet QoS requirements due to the interference,

MIST needs to take an action to mitigate the interference.

The performance monitor periodically samples Icpu and the

number of interrupts/softirq. If Icpu deviates from a threshold

set by the platform provider, the system will take a relevant

control action appropriately. The details are discussed later.

Eliminating Interference on CPU Scheduling. The main

goal of MIST CPU control is to minimize the impact of

performance interference among multiple tenant VMs on the

same host. In MIST, the performance monitor will trigger

a CPU control action to the enforcer. Then the enforcer
prioritizes the VM’s task by switching its scheduler from

CFS (default Linux scheduler) to RT (real-time) scheduler.

Linux provides two types of RT scheduling, FIFO and RR

(round-robin). We use RR algorithm (SCHED RR) because

there might be multiple VMs that the MIST system needs to

protect at a given time. We demonstrate that the use of RT

scheduler is actually very effective and can actually eliminate

the interference on the scheduler side (§VI).

Why real-time (RT) scheduler: To isolate the impact of CPU

interference, it is tempting to use cgroup’s proportional sharing

feature. However, in our measurement study, we found that

proportional CPU time division does not work as expected

especially under heavy loads. The reason was that, under the

interfering condition, a demanding process (or task) consumes

most of the CPU time and even if we set a very high value

in CPU share, we were not able to eliminate the impact

of interference. This is due to CFS scheduler’s time slice

management and interaction with load balancing, etc. [33]. The

CPU pinning is seemingly an alternative way to resolve the
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interference issue. Linux already exposes a set of API for users

to pin their process(es) to particular CPU(s). vCPU is a regular

Linux process on a host, so we may use this mechanism.

However, it significantly limits the flexibility of CPU resource

allocation, which is the main purpose of the oversubscription

for better resource utilization. Similar observations are made

in [15].

The use of RT scheduler offers an enough isolation to

VMs while it still allows us to maximize the aforementioned

flexibility. It enables MIST to provide robust isolation against

CFS jobs (§VI). Unlike pinning, it will not cause lower

utilization of CPU resource; when prioritized VMs belonging

to RT scheduler are not running, CFS will schedule jobs

without compromising its design goal.

Proactive Reservation on IO Scheduler. MIST needs to

handle two types of volume configuration. As discussed earlier

(§III), when there is a one-to-one relationship between a VM

and a volume, interference will not occur on the IO scheduler

since it is dedicated to the path. When the relationship is many-

to-one, i.e., multiple VMs on a host share a remote volume

(shared storage volume), many VMs share an IO scheduler and

they could compete each other. Thus, MIST needs to explicitly

control active IO traffic to ensure an assigned bandwidth. To

achieve the goal, MIST relies upon CFQ [4] available in Linux

kernel. The CFQ provides a way to implement proportional

bandwidth(or IOPS) sharing. The mechanism is conceptually

similar to classic weighted fair queueing and MIST ensures

minimum throughput by setting weights (shares) for each VM

and volume pair. One technical challenge is to accurately

estimate the capacity of the IO path. Accurately accounting

the capacity of a given storage path is a difficult problem since

it depends on many factors such as workload, the behavior of

other tenants who share the storage media, etc. One may use

an advanced technique to estimate a storage IO capacity as

in [2]. In this work, we measure the worst-case IO throughput

as the capacity of a given storage path, i.e., the number of

IOPS for random r/w workload.

Mitigating the Impact of Competing Interrupts. Similar to

the use of RT scheduler, it is tempting to have a functionality

to explicitly prioritize block IO requests against other types

of operations, e.g., network. There exist related efforts in the

research community [31], [21], [18]. However, since currently

the priority of softirq jobs are static in the kernel implemen-

tation, changing block IO operation’s priority requires kernel

modification and more importantly the implication of changing

softirq priority is not well-studied. MIST system does not have

a mechanism to explicitly boost block IO interrupt (softirq)

priority against network operations. Instead, MIST takes an

alternative approach and use CPU affinity such that a set

of CPU cores that process network requests are mutually

exclusive with the CPUs that process block IO requests.

We can achieve this functionality by allocating a block IO

operation’s IRQ to a specific CPU core and make interference

VMs’ network traffic use remaining CPU cores other than

the core used by block IO. In most cases that we explored,

this strategy was able to almost eliminate the interference.

Apparently, this area has a room to be significantly improved

as pointed out in the foregoing discussion.

V. IMPLEMENTATION

Control Groups. Control Groups [5] (cgroup), is a Linux

kernel feature that enables group scheduling of system re-

sources. It can aggregate processes into a group and associate

control policies. MIST system utilizes two subsystems of

cgroup infrastructure: cpu and blkio. Each cgroup subsystem

has a different set of tunables, e.g., set an upper limit and/or

weights, and provides useful statistics. As an example, MIST

uses RT scheduling parameter cpu.rt runtime us3 for its CPU

control. By choosing a proper RT runtime cpu.rt runtime us,

MIST system can explicitly allocate more CPU resources to

a given storage path. Suppose that an RT period is 1000ms

and the total RT runtime is 200ms. In this environment, if

a VM requires 10ms of RT runtime to support 5000 IOPS,

MIST system can run up to 20 VMs with a guaranteed

performance of 5000 IOPS by setting cpu.rt runtime us as

10ms (see §VI-A for real data). Additionally MIST also uses

block IO parameter blkio.weight for its block layer control.

MIST Prototype. We implement a prototype of MIST system

on the Ubuntu 12.04 LTS server edition. It is written in python.

Each component of Fig. 4 is implemented as a POSIX thread

and runs independently. For the REST-API, our API interface

is similar to that of OpenStack [25], i.e., the requests are based

on HTTP protocol and response messages are encoded in the

JSON format. The enforcer exploits two cgroup subsystems

– cpu and blkio. Each subsystem provides slightly different

semantics for users to control the system resources. For

instance, blkio subsystem provides mechanisms to ceil (or

throttle) the traffic and control weights for proportional sharing

of scheduling opportunities. The enforcer uses cpu subsystem

to change the process scheduler for reducing CPU interference,

and blkio to reserve bandwidth on IO scheduler.

VI. EVALUATION

In this section, we evaluate our prototype implementation.

The primary goal of the evaluation is to answer the following

questions: a) Can MIST protect IO workloads from a variety

of interfering conditions? b) Will MIST perform well under

real-world scenarios? c) How much overhead will be imposed?

For the experiments, we use the same machines, i.e., LE and

HE, described in Section III. Additionally, we use mid-level

enterprise class servers (ME). ME server is a Dell PowerEdge

R710 server with 16 physical cores (Intel Xeon CPU E5520

2.27 GHz, an 8-core CPU with hyperthreading) and 32 GB of

memory and 8 MB cache. We first perform micro-benchmarks

on each control point. Then we conduct a macro-benchmark

where we apply more realistic scenarios MIST. Lastly, we

present results on overhead imposed by MIST system.

3In order to use cpu.rt runtime us, Linux kernel should be recompiled with
the option CONFIG RT GROUP SCHED=y.
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Fig. 5. CPU control: (a) Icpu reflects the degree of interference well.
(b) RT protection mechanism eliminates CPU interference.
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A. Micro-Benchmark

Handling CPU interference. Our goal of CPU control is to

reduce the impact of scheduler interference by prioritizing a

target VM. To show the effectiveness of our metric (Icpu) and

control mechanism, we attempt to answer three questions.

1) How effectively can Icpu detect CPU interference?: To

answer this question, we created a VM with 2 vCPUs in ME

server; it generates sequential-read IO traffic. Next we created

an interfering VM with 20 vCPUs. This VM interferes with

the IO-generating VM by increasing the number of worker

threads from 8 up to 20; each worker thread uses 100% of one

CPU core. Fig. 5(a) shows that as CPU interference increases,

IOPS decreases. Note that our CPU interference metric, Icpu,

captures the degree of CPU interference very well. When our

RT protection mechanism takes an action (i.e., when Icpu >
0.05 from §III), the CPU interference was almost eliminated

(Fig. 5(b)).

2) How should we set RT parameters?: We set up two

VMs in ME server: an IO-generating VM with 2 vCPUs and

an interfering VM with 20 vCPUs. Then we executed an IO-

generating VM with an RT scheduling policy (SCHED RR).

While changing the VM’s RT runtime (see §V), we measured

IOPS for diverse types of IO pattern. Fig. 6 shows that IOPS

increases in a nearly linear relation with RT runtime for

each IO type. The profile shown in Fig. 6 is used by MIST

system’s enforcer. Whenever MIST needs to take an action

to eliminate CPU interference, the enforcer changes the VM

tasks’ scheduling policy to SCHED RR, and then finds the

RT runtime matching the requested IOPS from Fig. 6. For

example, if a requested IOPS is 2000 for a mixed sequential

read and write (i.e., SeqRW), the enforcer chooses 8ms for

the RT runtime so that the IOPS of 2000 is achieved. In

this fashion, our RT protection mechanism guarantees IOPS

throughput. Since the combination of a host machine and a

storage device has its own performance characteristics, it is
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required to profile IOPS vs. RT runtime for each combination.

3) Can MIST protection mechanism handle real-world
workloads?: At the beginning, an IO-generating VM with 4

vCPUs was running with default CFS scheduler in LE server

(Baseline). We borrowed real-world IO workload character-

istics from a Hotmail service [32]. For this experiment, the

VM generates INDEX workloads where SeqR/RandW ratio is

75%/25% and IO block size is 4/64KB. Then we added one

interfering VM with 16 vCPUs running our CPU load genera-

tor (Interference). Then, we enable our protection mechanism

(Protection). The result (Fig. 7) shows that MIST’s mechanism

actually works for real-world workloads, i.e., throughput and

latency are recovered to those of the Baseline.

Bandwidth reservation on IO scheduler. In this subsec-

tion, we evaluated our control mechanism on the block IO

scheduler. For this experiment, we configured a shared storage

volume. We created three VMs and connected them to a

volume in a remote machine. The volume is shown as a block

device to the host. As a result, all three VMs (i.e., VM1, VM2,

and VM3) are attached to a single IO scheduler configured to

the block device. For workloads, we tried both uniform and

mixture of different workloads. Due to space limitations, only

mixed case is presented. Specifically, VM1 has sequential rw,

10%/90% rw ratio, and block size 64KB. VM2 has sequential

rw, 75%/25% rw ratio, and varying block size (50% 4KB,

50% 32KB). VM3 has random rw, 50%/50% rw ratio, and

block size 8KB. We use an SSD in LE for this experiment.

The result is presented in Fig. 8. At the beginning, all three

VMs were running with no reservations (Best-effort). Every 30

seconds, we change reserved IOPS for each VM. At 30s, we

reserved 1000 IOPS for VM1 and two other VMs still had no

reservations (1000:B:B). At 60s, we changed the reservation

of VM1 to 200 IOPS and make a new reservation for VM2

as 1600 IOPS (200:1600:B), etc. Overall, the reservations

are met correctly whenever they are enforced to any VM.

We also had tried a couple of different workload mix and

conducted similar experiments in HE server. The results were
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qualitatively similar. We omitted the results for brevity.

Mitigating the impact of network interrupts. MIST system

also has a mechanism to reduce the impact of network traffic

co-located on the same host. For brevity (to reduce the

redundancy), we postpone the discussion on our mechanism

to the next subsection (§VI-B).

B. Macro-Benchmark: Varmail with Transcoding Service.
Next we conducted a macro-benchmark using more realistic

workload and interferer. For IO workloads, we use varmail

workloads in Filebench software [9]. The varmail workload

performs delete/create/append/fsync/read/open operations on

the file. It spawns 16 threads, deals with 1000 files, and uses

the 16k IO block size. When running inside a VM on LE

server, the varmail generates approximately 4000∼6000 IOPS.

We provision one VM with one vCPU for varmail workloads

and allocate 500MB of memory. As for interfering VMs, we

chose to use VLC media player [34]. The VLC software can

execute as a streaming client or server. We set up six VMs

and use one for a streaming server and the other five for

streaming clients. The server streams 720p HD videos encoded

with H.264 codec. This configuration nicely captures a mixture

of compute, network, and IO operations occurring all together

in the same hardware. All VM sizes were the same as the first

VM. The experiment is performed in LE server.

Figure 9 shows the result. At the beginning, the varmail

VM was running alone without any competing workloads and

shows about 4000∼6000 IOPS. Next we made a reservation,

i.e., 3000 IOPS. After 60s, all other VMs started to run and

the varmail VM’s performance is greatly affected (degraded

to 1700∼2000 IOPS), which is apparently below the reserved

bandwidth. MIST’s performance monitor detected the inter-

ference since Icpu value surges to more than 25, which is a

way bigger than our threshold (0.05). Now enforcer triggered

two control mechanisms of MIST system. The first mechanism

that took an action was CPU control. Both VLC’s video data

streaming and media file decoding are CPU-intensive opera-

tions [17]. MIST changes the scheduler of VM1 (varmail) to

RT scheduler and the interference is eliminated as shown in

Fig. 9(b). However, it was not sufficient alone since a large

volume of network requests were being generated by VLC

server/clients. To mitigate the impact of network traffic, MIST

partitioned CPU cores so that network and block IO interrupts

are handled in a disjoint set of CPU cores. Specifically, in

this experiment, MIST allocates CPU0 for block IO interrupts

and other CPUs (i.e., CPU1-CPU7) for network interrupts.

Fig. 9(c) illustrates the impact of this control. It first shows

that the co-located interrupts generated by network and block

IO operations interfered each other (see 60s∼120s). Then it

demonstrates the effectiveness of our control; it is clear that the

separation of different types of demanding interrupt requests

actually helps both workloads. As a result of the control action

at 120s, the number of softirqs for both block IO and network

operations are boosted. With these control actions, the IOPS

is recovered close to the original state and consequently meet

the QoS requirement, i.e., 3000 IOPS that we reserved before.

C. MIST System Overhead
In this subsection, we measure and present performance

overhead imposed by MIST system. First of all, MIST sys-

tem’s overhead comes from the use of cgroup and its as-

sociated scheduler. The enforcer uses the cgroup interface

and scheduling infrastructure provided by the Linux OS. We

compare the performance penalty of using CFQ against the

default block IO scheduler of Ubuntu 12.04 LTS, i.e., deadline

scheduler. (The graph is omitted for brevity.) When backed

by high IOPS storage media such as SSDs4, the deadline

scheduler outperforms the CFQ scheduler. The throughput

(IOPS) difference could be up to 30% and latency difference

is about 23ms (� 45.8ms of CFQ − 22.7ms of Deadline on

average) for read operations and 14ms (� 51.2ms of CFQ

− 37.6ms of Deadline) for write operations, when the three

VMs were competing each other. The result is also roughly

consistent with other research efforts [16], [8]. Although these

performance differences are non-negligible, we would argue

that the problem strictly comes from CFQ implementation and

can be improved separately as in [29], [26]. For cpu subsystem

of cgroup, we do not observe any performance degradation

due to the scheduler change. Finally, MIST system needs to

maintain system statistics, Nnvc and Nvc, in order to calculate

Icpu value. The MIST performance monitor will collect the

data every one second. It consumes negligible CPU cycles.

VII. RELATED WORK

Many prior work on IO scheduler is based on proportional

allocation or sharing of IO resources. Many of these are based

on classic weighted fair queueing (WFQ) and many variants of

WFQ have been developed in various context. Among them,

mClock [11] proposes a tag-based queue control mechanism

that can protect IO traffic from other tenants sharing the

same hardware. Stonehenge [14] implements a custom disk

scheduler that specifically provides QoS functions to a virtual

disk. Unlike MIST, most of them modify the IO scheduler

to achieve the goal and does not address the contention from

other resources, e.g., CPU and interrupts. There are more work

in this context [3], [27].
Another body of work aims to realize end-to-end bandwidth

reservation mechanism. Gulati et al. [12] proposes tree-based

data structure to enforce distributed IO bandwidth reservation.

In addition, IOFlow [32] presents an SDN-like system where

a centralized policy controller takes a high level storage policy

and directs host-side clients and servers to enforce the rules.

Pulsar [2] aims to provide end-to-end performance isolation

by introducing VDC concept. Through the VDC, the system

provides a tenant with aggregated bandwidth guarantee, intro-

ducing an intermediate throughput metric. These systems are

complementary to our work since our system could provide

host-level enforcement for such systems.
Next body of related work lies in the area of CPU/memo-

ry/network/IO sharing and prioritization. Silva et al. [30] pro-

poses a cgroup-based VM performance isolation mechanism.

4We also performed similar experiments on HDDs, but it does not show
meaningful difference between the two schedulers.
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Fig. 9. Varmail: the interference has been successfully controlled.

However, they show that their mechanism fails to isolate IO

performance (which is our paper’s main focus). Das et al. [7]

deals with CPU sharing problem in the context of relational

database applications. Their LDF metric is qualitatively similar

to task scheduling latency metric in Linux. Thus, we do

not expect for LDF to solve our problem due to the reason

discussed in §III. Cucinotta et al. [6] uses RT scheduler

to provide performance isolation for a network application

and inspired our use of RT scheduler. Gupta et al. [13]

implemented the knobs on hypervisor to control aggregated

resource consumption although the system is specific to the

Xen platform. Moreover, there exists a body of work on

reducing the impact of resource contention for NUMA (Non-

Uniform Memory Access) architecture [22], [28]. In this paper,

we implicitly mitigate the impact of NUMA-related contention

problems by boosting a scheduling priority using RT scheduler.

Another set of work focuses on detecting performance

interference. DeepDive [23] constructs a model using machine

learning algorithm to identify resource contention. Infrastruc-

ture providers can trigger appropriate actions, e.g., migrating

VMs to a different host. CPI2 [36] uses the CPI and throttle

the source of CPU interference to relieve the impact. The

methodologies explored in these papers are complementary to

our work and can potentially enhance the detection accuracy

of MIST system.

VIII. CONCLUSION

In this paper, we present a collection of control mechanisms

that can help us significantly mitigate the impact of perfor-

mance interference from other demanding VMs sharing the

same host machine. With the control mechanisms, MIST can

handle the interference occurred in multiple system resources

including CPU, IO scheduler, and network. Our novel metric,

Icpu, can effectively detect the contention on CPU resources,

thereby triggering our control actions appropriately. Based

on our prototype implementation, we demonstrate that MIST

system can handle different types of interfering workloads and

a wide range of IO workload types with low system overhead.

Lastly we acknowledge helpful comments from Minsung Jang.
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