
J. Parallel Distrib. Comput. 104 (2017) 88–98
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

NEAT: Network link emulation with adaptive time dilation
Hee Won Lee ∗, Mihail L. Sichitiu, David Thuente
North Carolina State University, Raleigh, NC 27695, United States

h i g h l i g h t s

• We present an approach for emulating networking links using adaptive time dilation.
• Our system accurately emulates delay/throughput while allowing for varying TDFs.
• Our system emulates distributed systems running different operating systems.

a r t i c l e i n f o

Article history:
Received 23 January 2015
Received in revised form
3 January 2017
Accepted 10 January 2017
Available online 16 January 2017

Keywords:
Network emulation
Time dilation
Virtual time
Distributed system
Virtual machines
KVM
QEMU

a b s t r a c t

In evaluating the performance of highly complex networked systems, emulation is often used as it main-
tainsmuch of the realismof testbeds,while offering increased flexibility and scalability. In large emulation
systems, multiple and heterogeneous virtual machines can be deployed in relatively few general purpose
physical hosts. Time dilation is a technique that allows virtual time to pass at a different (and potentially
variable) rate with respect to real time, allowing for increased scalability of the emulated system. In this
paper we present networking links in a large emulated system employing adaptive time dilation. The link
emulation focuses on accurate delay and throughput emulation while allowing varying time dilation fac-
tors. To evaluate our system, we measure the delay and throughput of the virtual links under variable
system loads.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

Network emulation is a technique that combines real elements
of a deployed networked application such as end hosts and proto-
col implementations with synthetic, simulated, or abstracted ele-
ments such as network links, intermediate nodes and background
traffic. When network emulation is comprised of exclusively em-
ulated nodes and links, without connecting to any real elements,
time passage can be dynamically controlled. Time dilation creates
the illusion of improved hardware performance to the emulated
nodes and links such that even a large-scale system can be built
with relatively limited physical resources. Time dilation allows the
passage of virtual time (i.e., time from the perspective of a virtual
node) to proceed at a slower rate than real time by a specified fac-
tor, which is referred to as time dilation factor (TDF) [15]. When
using the time dilation technique, DieCast [14] statically scales the

∗ Corresponding author.
E-mail addresses: hlee17@ncsu.edu (H.W. Lee), mlsichit@ncsu.edu

(M.L. Sichitiu), djthuen@ncsu.edu (D. Thuente).

http://dx.doi.org/10.1016/j.jpdc.2017.01.013
0743-7315/© 2017 Elsevier Inc. All rights reserved.
data rates and delays of emulated links for achieving a target net-
work performance. When a virtual machine is scaled by a factor
TDF = 10, for example, DieCast changes a network link rate of
1 Gbps to 100 Mbps, and a network link delay of 100 µs to 1 ms.

When TDF statically increases to a greater extent than needed,
we underutilize the physical resources, and thus unnecessarily in-
crease emulation time. Our previouswork [23] overcomes this con-
servative approach by dynamically adapting the TDF to system
loads; we refer to this as adaptive time dilation. The adaptive time
dilation allows virtual machines (VMs) to emulate higher perfor-
mance than the actual performance of the physical machines. Our
previous paper does not cover inter-VM’s emulated network per-
formance under varying virtual time. As TDF dynamically changes,
it is not easy to maintain a constant network link performance be-
tween virtual hosts. If TDF increases, the data rate of a virtual link
between VHs appears to increase, and the delay of the virtual link
appears to decrease, and vice versa. Consequently, when packets
pass through the virtual link, the network measurement result is
not accurate.

In this paper we propose an approach to controlling the value
of the emulated link rates and delays such that the total end-to-
end rates and delays between VHs aremaintained near their target

http://dx.doi.org/10.1016/j.jpdc.2017.01.013
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.01.013&domain=pdf
mailto:hlee17@ncsu.edu
mailto:mlsichit@ncsu.edu
mailto:djthuen@ncsu.edu
http://dx.doi.org/10.1016/j.jpdc.2017.01.013

H.W. Lee et al. / J. Parallel Distrib. Comput. 104 (2017) 88–98 89
(a) Real-world topology.

(b) Emulation topology.

Fig. 1. Overview of proposed network emulation with the possible mapping of the
virtual elements to physical hosts.

values despite changes in the TDF. We also show that for each
target delay there exists a lower TDF bound that the TDF has to
exceed for the target delay to be achievable. In particular, when
emulating low latency – e.g., emulating InfiniBand having 5-µs
latency with 1 Gb Ethernet having 500-µs latency between VMs
– we have to operate the emulation system at or above the lower
TDF bound.

The remainder of the paper is organized as follows.We first pro-
pose our approach for accurate network emulation under adaptive
time dilation in Section 2, and then present our system implemen-
tation in Section 3.We evaluate our emulation system in Section 4,
and discuss related works in Section 5. Finally, conclusions follow
in Section 6.

2. Proposed approach

In this paper we propose an approach to emulate networks
composed of fully-virtualized nodes and virtual links using adap-
tive time dilation. As the relative passage rate of virtual time (=
1

TDF) changes in order to control system and network loads caused
by the applications, the virtual links’ emulated data rate and emu-
lated delay should be scaled such that virtual hosts (VHs) perceive
constant link characteristics. While many emulation approaches
use lightweight virtualization for scalability [43,6,21], our system
uses full virtualization for the VHs. Hence, the system can employ
unmodified applications running on heterogeneous, unmodified
OSs.

For our network emulation system, each network element in
the desired topology is instantiated as a virtual element that runs
on a PH. For scalability, multiple PHs can be used for mapping the
virtual network elements to host machines.

Fig. 1(a) depicts a sample network with Windows, Linux, and
FreeBSD clients connected to a server through four routers. Fig. 1(b)
shows a possible mapping of the elements in the real-world
Fig. 2. Delay components of a virtual link.

topology into virtual elements emulated on five physicalmachines.
The clients, server, and routers are emulated in our system using
QEMU-KVM that supports full virtualization. For link emulation,
weuse Tc [25] andNetEm [16,28] to produce the effects of designed
rates and delays on packets passing through a virtual link in our
system.

We apply the adaptive time dilation mechanism [23] to control
the PHs’ system loads. The adaptive timedilation allows virtual ele-
ments to operate at a target emulation performance by preventing
their PHs from being overloaded. Under the adaptive time dilation,
all virtual elements’ time passes in a synchronized manner, while
the passage rate is dynamically changing in response to PHs’ loads
generated by VHs’ traffic.

2.1. Virtual link design

When time dilation is applied to a virtual network, the network
can appear faster or slower to the VHs depending on the TDF.
In order to accurately emulate target delays independent of the
changes in the TDF, the data rates anddelays of emulated links have
to change in concert with TDF.

For a virtual link, the virtual-time target data rate rateVtarget can
be controlled by the real-time emulated rate rateRemu, which is set
by the Token Bucket Filter of Tc, such that:

rateRemu =
rateVtarget
TDF

. (1)

In addition, a virtual link’s error rates due to packet duplication,
corruption, reordering, etc. can also be emulated by setting them
using the NetEm command options, because the error rate is rep-
resented as a percentage and is independent of TDF.

However, it is significantly more difficult to emulate the target
delay of a virtual link. We target NEAT at emulating a delay time
that a network packetwould encounterwhen traveling fromaVH’s
application to the other VH’s via a virtual link.

Fig. 2 shows the components of a delay incurred when a packet
travels from VH1 to VH2 through a virtual link. The virtual link’s
target delay, delayVtarget , is given by:

delayVtarget =
delayRtarget

TDF
, (2)

where delayRtarget is the real-time target delay of a virtual link.
Since our system scales time but does not scale CPU cycles,

the delay caused by the hypervisor and the guest OS’s network
protocol stack, delayRVHs (=delayRVH1 + delayRVH2), is practically
independent of TDF. Physical delay delayRphy is also independent of
TDF. Hence, the delayRtarget can be controlled by an emulated delay
delayRemu, as illustrated in Fig. 2. In addition to controlling delayRemu
set by NetEm, the range of values of TDF also has to be limited for
small target delays, delayVtarget .

To illustrate the need for a lower limit on TDF, we present two
sample scenarios. For these examples, assume that delayRVH1 =

1 ms, delayRVH2 = 1 ms, and delayRphy = 1 ms in Fig. 2.

90 H.W. Lee et al. / J. Parallel Distrib. Comput. 104 (2017) 88–98
Fig. 3. TDF control mechanism.

• Scenario 1: Without time dilation, i.e., when TDF = 1, a target
delay delayVtarget = 3 ms can be emulated by setting delayRemu to
0ms, because delayRVH1, delay

R
VH2, and delayRphy already generate a

total of 3 ms. Another target delayVtarget = 5ms can be produced
by setting delayRemu = 2ms.However, a target delay delayVtarget =

1 ms is not possible, because setting delayRemu = −2 ms is
physically impossible in the real world.

• Scenario 2: When the virtual time passes three times slower
than real time, i.e., TDF = 3, it is possible to create delayVtarget =

1 ms by setting delayRemu = 0 ms, since delayRtarget = 3 ms in (2).
Moreover, when TDF = 6, delayVtarget = 1 ms can be created
by adding delayRemu = 3 ms, so that the total delayRtarget becomes
6 ms.

In scenario 2, delayVtarget = 1 ms is feasible only when TDF ≥ 3,
since TDF < 3 requires a negative value of delayRemu. We refer
to the minimum TDF required to emulate a virtual link’s target
delay as TDF link. For the example in scenario 2, TDF link is 3 for the
corresponding target delay delayVtarget = 1 ms.

2.2. TDF control

NEAT aims at accurate emulation of virtual links towards their
target delays even when TDF dynamically changes. When VHs’
workloads load the PH, our system increases TDF, and vice versa. As
TDF changes due to the PH’s overload, NEAT accordingly controls
the emulated rate and delay, rateRemu and delayRemu, to maintain a
target rate and delay respectively, as discussed in Section 2.1.

NEAT changes TDF to control PHs’ loads using TDF load; we refer
to a TDF required to prevent VHs from overloading the PH, which is
based on its PH’s CPU loads, as TDF load. In addition to TDF load thatwe
introduced in our previous work [23], NEAT controls TDF to satisfy
the requirement of a minimum TDF (=TDF link) for emulating the
target delay of a virtual link.

Our TDF control mechanism is illustrated in Fig. 3. For each
virtual link the TDF link agent first computes a new TDF link, which
is aminimumTDF required to create the target delay of that virtual
link. For multiple virtual links, we take the largest value among
each virtual link’s TDF link such that all virtual links are able to create
their target delays. Also, when the CPU loadmonitor is periodically
checking the PHs’ CPU loads, the TDF load agent computes a new
TDF load based on the CPU loads.

The TDF controller then broadcasts themaximum of TDF link and
TDF load to all the other PHs;we refer to themaximumof TDF link and
TDF load as system TDF (or TDF system). The maximum of TDF link and
TDF load guarantees that all virtual links can create their target delay
and no PHs are overloaded. NEAT synchronizes TDF system in all VHs
and virtual links distributed over multiple PHs.
2.3. TDF synchronization

In this sectionwe summarize the synchronizationmethod used
by NEAT to ensure that all VHs use the same TDF throughout the
emulation. The system is very similar to the one used in [23].

Each PH hosts a process called TDF controller whose main pur-
pose is to determine what theminimum TDF is for the system; this
value is called TDF local. Each TDF controller on a PH is running two
TDF agents for determining theminimumTDF required for that PH:
a TDF load agent that determines the minimum TDF to avoid over-
loading the CPU system (called TDF load) and a TDF link agent that
determines the minimum TDF required to accurately emulate the
link (called TDF link). The TDF local for a PH is the maximum of the
TDF load and TDF link, essentially slowing down the emulator to avoid
overwhelming the CPU as well as correctly emulating the links.

Synchronizing the TDF in multiple PHs is done by periodically
broadcasting the locally computed value TDF local to all the other
PHs by using a dedicated LAN interface interconnected through
a 1 Gbps switch. The broadcasting period is 10 ms, whose value
is a compromise between timely synchronization and system
overhead [23]. Upon receiving new TDF messages from different
TDF controllers, the maximum of the locally determined TDF local
and the other values of TDF local are used as the TDF system; i.e., in
essence the entire system is running as slow as the slowest PH. PHs
are synchronized at the granularity of the synchronizationmessage
interval. VHs that run on the same PH are informed of the current
TDF system by using a shared memory (the TDF controller writes it,
and all the VHs read it).

We use User Datagram Protocol (UDP) packets for synchroniza-
tion messages. Synchronization delay may occur due to the UDP
packet loss, and the synchronization however will be recovered at
the subsequent synchronization message. Although Transmission
Control Protocol (TCP) can be used instead, UDP is a better choice
because TCP may introduce additional delay due to its congestion
and flow control mechanism; if a packet is lost, then TCP will re-
transmit that packet and delay the subsequent packets. For our
controller, the next UDP packet is not only a retransmission, but
also has new information.

3. System implementation

We first present our system architecture for TDF control. We
then present our virtual link implementation. We also describe
how our systemmeasures the physical link delay, which is a delay
component of a virtual link. Finally, our system load control mech-
anism is briefly discussed.

3.1. System architecture

Fig. 4 depicts our system architecture for a sample virtual net-
work with three VHs. The three VHs are deployed in two physical
hosts (i.e., PH1 and PH4) as shown in Fig. 4(b); a larger virtual net-
work may need to use more physical hosts. The VHs are connected
through TAP interfaces and bridges. Each VH creates a TAP inter-
face, which can be bridged to a real network interface to commu-
nicate with VHs running in other PHs.

When receiving a synchronization message, the TDF controller
computes a new system TDF (i.e., TDF system) and store it into the
shared memory of each PH. The VHs then use this TDF value to
control the progress of their virtual clocks. Based on the new sys-
tem TDF, the TDF link agent updates the emulated rate and delay,
rateRemu and delayRemu, using Tc and NetEm in the TAP device of each
virtual link.

VHs use a virtual network channel (using each PH’s eth0) to
communicate with each other. TDF synchronization messages use
a physically-isolated control channel (using each PH’s eth1). The
isolated control channel assures stable TDF control operations by
minimizing control-related side effects caused by heavy virtual
network traffic.

H.W. Lee et al. / J. Parallel Distrib. Comput. 104 (2017) 88–98 91
Fig. 4. A sample virtual network in (a) can be emulated by our system, as depicted
in (b).

Fig. 5. Virtual link implementation.

3.2. Virtual link implementation

In order to emulate a link with a target data rate and delay
between VHs, a virtual link is constructed as illustrated in Fig. 5.
The virtual link connects VH1 and VH2, each running in a different
PH. Each VH creates a TAP interface to communicate with the
other VHs. Each TAP interface is connected to its physical interface
through a bridge. The rate and delay controls are implemented in
the TAP interfaces using Tc’s Hierarchical Token Bucket (HTB) [17]
and NetEm.

For the emulation of the target data rate of a virtual link,
whenever the system TDF changes, a rate control, rateRemu (in Fig. 5),
is changed by using (1).

For the emulation of the target delay of a virtual link, we use
(2). As illustrated in Fig. 2, the real-time target delayRtarget can be
obtained by:

delayRtarget = delayRemu + delayRVH1 + delayRVH2 + delayRphy, (3)

where delayRVHi is the delay caused by the hypervisor and the guest
OS’s protocol stack in VHi, and delayRphy is the real-time physical
link delay. Once we measure delayRVHi and delayRphy before running
our system, the emulated delay delayRemu can be computed by:

delayRemu(n) = delayVtarget · TDF(n) − delayRVH1 − delayRVH2

− delayRphy. (4)

Setting up a negative delay is physically impossible, i.e.,
delayRemu(n) ≥ 0 in (4). Hence, aminimumTDF required for a target
delay, TDF link, is obtained from (4) by:

TDF link =
delayRVH1 + delayRVH2 + delayRphy

delayVtarget
. (5)
Fig. 6. Physical link delay measurement.

3.3. Physical link delay measurement

In order to emulate a target delay of a virtual link, NEAT uses the
minimum TDF, TDF link from (5), and the emulated delay, delayRemu
from (4), both of which need the physical link delay, delayRphy. For
simplicity we can measure delayRphy before starting emulations.
However, for flexibility, NEAT periodicallymeasures delayRphy in the
system.

Fig. 6 shows how NEAT measures physical link delay. The TDF
link agent measures RTT R

phy and RTT R
phy&emu. RTT

R
phy measurement

packets use a 172.16.x.x path to eliminate the effect of link
emulation, and RTT R

phy&emu measurement packets use a 192.168.x.x
path. Note that both RTT R

phy and RTT R
phy&emu exclude VHs’ delay

(i.e. delayRVH1 and delayRVH2) because they are measured by the TDF
link agents running on PHs.

The physical link delay delayRphy(n) can be obtained by measur-
ing RTT R

phy(n) as:

delayRphy(n) =
RTT R

phy(n)

2
(6)

assuming that the delays comprising RTT R
phy are symmetrical.

In order tominimize the variance of RTT R
phy, we use an exponen-

tial moving average (EMA) for RTT R
phy(n) as:

RTT R
phy,EMA(n) = (1 − α) · RTT R

phy,EMA(n − 1) + α · RTT R
phy(n), (7)

where 0 ≤ α ≤ 1.
By using RTT R

phy(n) for a virtual link, NEAT can compute the
minimum TDF TDF link from (5) by:

TDF link =
delayRVH1 + delayRVH2 +

RTTRphy,EMA(n)

2

delayVtarget
. (8)

A TDF ≥ TDF link allows our system to emulate a virtual link’s target
delay delayVtarget .

In addition to TDF link, if delayRphy(n) changes, NEAT should adjust
delayRemu according to (4) in order to emulate the target delay
delayVtarget .

The physical link delay delayRphy(n) can also be obtained by:

delayRphy(n) =
RTT R

phy&emu(n)

2
− delayRemu(n), (9)

where RTT R
phy&emu(n) is measured by the TDF link agent, as illus-

trated in Fig. 6. Hence, a new emulated delay delayRemu(n + 1) can

92 H.W. Lee et al. / J. Parallel Distrib. Comput. 104 (2017) 88–98
be obtained from (4) by:

delayRemu(n + 1) = delayVtarget · TDF(n) − delayRVH1 − delayRVH2

−
RTT R

phy&emu(n)

2
+ delayRemu(n). (10)

In terms of system architecture and its implementation, it is
simpler tomeasure physical link delays before running the system.
A system with the simpler architecture can emulate each target
delay using (4) and (5). The simpler architecture is suitable for a
physical configuration where the physical link delay is small and
approximately invariant; for instance, all PHs running VHs are lo-
cated in a LAN and there is no interference fromother network traf-
fic. The architecture of NEAT is more flexible because it measures
physical link delays in the system. NEAT emulates each target de-
lay using (8) and (10). The advantage of the flexible architecture is
that target link delays can be emulated even if physical link delays
incur large variance; for instance, we can create a virtual link that
connects geographically-distributed VHs (e.g., one is in the West
Coast and the other in the East Coast in the United States). The dis-
advantage is that the system is more complex.

3.4. System load control

In this section we summarize the system load control mech-
anism covered in our previous paper [23]. Our system load con-
trol mechanism seeks to maintain system loads at or below a
target CPU load level (Loadtarget). When a PH’s load increases above
a target level, the TDF controller sends a larger TDF load to each PH,
thereby increasing the system TDF, such that virtual time passage
rate (= 1

TDF) decreases. As VHs proceed at a decreased rate in vir-
tual time, VHs produce lighter loads to their PHs. Conversely, if a
PH’s load decreases below the target CPU load, the TDF controller
decreases TDF load.

4. Performance evaluation

In this section,we determine systemparameters, and then eval-
uate emulated delay and throughput under scenarios with, and
without traffic loads.We also evaluate how system load control al-
lows for emulating a target throughput under TCP and UDP traffic
scenarios. Finally, we evaluate our emulation system using real-
world applications. NEAT emulates a heterogeneous system with
distributed nodes running different operating systems, and runs a
real-world application on it.

Our emulation system is built on general purpose servers (Dell
PowerEdge R210). We use Ubuntu Linux (ubuntu-10.04-server-
amd64) for PHs and VHs. In this setup, we run ourmodified version
of QEMU-KVM (qemu-kvm-0.13.0) and our TDF agent [29].

4.1. System parameters

In this section, we describe how we determine the system
parameters, i.e., the virtual host delay delayRVHs, the exponential
moving average coefficient α in (7), and a TDF link change threshold.

4.1.1. Virtual host delay delayRVHs
In Fig. 2, the delay introduced by VHs’ hypervisor and network

protocol stack, delayRVHs (=delayRVH1 + delayRVH2), is nearly constant
for a given guest OS and PH, and independent of TDF, as this delay is
measured in real time units. Note that the delayRVH1 and delayRVH2 are
not affected by system overload because we prevent overload of
the PHs by controlling system loads using TDF load. After measuring
RTT R

VH_VH , i.e., a real-time RTT from the guest OS of a VH to the other
VH, and RTT R

phy, i.e., a real-time RTT bypassing the rate and delay
Fig. 7. Measurement of virtual host delay delayRVHs .

emulation elements, rateRemu and delayRemu in Fig. 6, the delayRVHs can
be computed by:

delayRVHs =
RTT R

VH_VH − RTT R
phy

2
. (11)

Experimentally, for our setup, the five-minute average of
delayRVHs computed by (11) is 197 µs, as shown in Fig. 7.

4.1.2. Exponential moving average coefficient α and TDF link change
threshold

In measuring physical link delay in Section 3.3, we introduced
the parameter of α of EMA in (7) in order to reduce the
measurement variance. While decreasing α from 1 to 1

16 , we
compute the corresponding TDF link by using (8) where NEAT
measures physical link delay RTT R

phy in the system and uses virtual
host delay delayRVHs (=delayRVH1 + delayRVH2) of 197 µs that we
measured before running the system as shown in Section 4.1.1. As
α decreases from 1 to 1

16 , the computed TDF link becomes smoother,
as shown in Fig. 8(a), (b), and (c).

To further eliminate variability in TDF link, we introduce a
threshold, θTDF link ; if the computed TDF link does not change more
than θTDF link , then the TDF link change is not enforced (neither locally,
nor communicated to the other PHs). As shown in Fig. 8(d) and
(e), a change threshold of θTDF link = 10% completely removes the
noise remaining after the EMA. Therefore, we use α =

1
16 and

θTDF link = 10%.

4.2. Minimum TDF

Our emulation system operates at TDF ≥ TDF link to emulate
a target delay delayVtarget in each virtual link. In order to evaluate
a minimum TDF, TDF link, that is required to create the target
delay of a virtual link, we temporarily disable the exchange of the
TDF synchronization messages from the TDF controller. We then
measure RTT V

VH_VH (i.e., a virtual-time RTT measured from inside
a VH to the other VH) while increasing TDF from 0.01 to 100
manually.

NEAT dynamically adjusts the emulated delay delayRemu us-
ing (10), while measuring RTT R

phy&emu in the system. For delayRVHs
(=delayRVH1 + delayRVH2), NEAT use 197 µs obtained from Sec-
tion 4.1.1.

Fig. 9(a) shows that for the topology in Fig. 6, i.e., two VHs
and one virtual link, when the one-way target delay delayVtarget is
500 µs, the measured values of RTT V

VH_VH (i.e., a round-trip time
from the guest OS of VH1 to VH2) are approximately 1000 µs
when TDF & 1. The target delay can be successfully emulated
as the emulated delay delayRemu is appropriately adjusted when
TDF & 1. Fig. 9(b) shows that for all TDF values larger than the
corresponding TDF link the target delays are successfully achieved.
The minimum TDF for a virtual link, TDF link, can be computed by
(8). The corresponding TDF link is approximately 0.25, 0.5, 1, 2, and
4 for delayVtarget = 2000 µs, 1000 µs, 500 µs, 250 µs, and 125 µs
respectively.

H.W. Lee et al. / J. Parallel Distrib. Comput. 104 (2017) 88–98 93
(a) α = 1. (b) α =
1
4 . (c) α =

1
16 . (d) θTDF link = 5%. (e) θTDF link = 10%.

Fig. 8. When θTDF link = 0%, TDF link changes are reduced as α decreases from 1 to 1
16 in (a), (b), and (c). When α =

1
16 , as θTDF link increases from 0 to 10%, TDF link changes are

further reduced in (d) and (e).
Fig. 9. (a) Emulated delay delayRemu is appropriately adjusted to achieve the target RTT (2 · delayVtarget = 1000 µs) when TDF & 1. (b) Each RTT V
VH_VH (measured from a VH)

becomes the target RTT = 2 · delayVtarget when TDF ≥ TDF link .
4.3. Network link delay emulation

In this section we evaluate how well NEAT emulates network
link delay by comparing their distributions for real-world and
emulation situations. We test a local area network scenario with
hundreds of microsecond delay, and a wide area network scenario
with tens of millisecond delay.

4.3.1. Local area network scenario
For the comparison of real-world delays and emulated delays,

we use a topology where two physical hosts (host 1 and host 2)
are connected through 1-Gbps Ethernet in a local area network
(LAN), as shown in Fig. 10(a). This real-world network topology
is emulated as depicted in Fig. 10(b), where PH1 emulates VH1
for real-world host 1 and PH2 emulates VH2 for real-world host
2 respectively. The target data rate of a virtual link between VH1
andVH2 is set to 1Gbps (corresponding to the real 1-Gbps Ethernet
link).

The distribution of 1000 real round-trip delays between host 1
and host 2 is shown in Fig. 10(c). Since the average round-trip time
is 235µs,weuse 118µs (= 235

2 µs) for the target delay of the virtual
link between VH1 and VH2, delayVtarget , in Fig. 10(b).

When we do not control time by using TDF = 1 (i.e., no
time dilation), the resulting emulated round-trip time has an
average of 1091 µs, as shown in Fig. 10(d). Our TDF controller
enables a target round-trip time (i.e., 2 ·delayVtarget) to be accurately
emulated by operating TDF at or above TDF link. When running our
emulation system at TDF = TDF link (4.1 in our experiment), the
emulated round-trip delays are distributed, as shown in Fig. 10(e).
The emulated round-trip time distribution of Fig. 10(e) closely
resembles the real-world ping’s round-trip time distribution
shown in Fig. 10(c).

4.3.2. Wide area network scenario
We evaluate emulated delay in a wide area network (WAN)

illustrated in Fig. 11(a). The real-world topology is emulated by our
emulation system, as shown in Fig. 11(b). For a virtual link between
VH1 and VH2, we use a target data rate ratetarget of 1 Gbps and a
target delay delayVtarget of 35.7 ms. When host 1 located in North
Fig. 10. Validation of delay emulation for a local area network. (a) Real-world
topology; (b) Emulation topologywith delayVtarget =

235
2 µs; (c) Real round-trip time

distribution for scenario (a); (d) Emulated round-trip time distribution without
time dilation (TDF = 1); (e) Emulated round-trip time distribution with adaptive
time dilation—the TDF controller maintains TDF at TDF link = 4.1.

Carolina State University (NCSU) sends 1000 ICMP packets to host
2 located in University of California, Los Angeles (which is about
4111 km away fromNCSU), the average round-trip time is 71.4ms,
as shown in Fig. 11(c). Hence, we set the target delay from VH1 to
VH2, delayVtarget , to 35.7 (= 71.4

2) ms.
With adaptive time dilation, the TDF controller operates TDF at

TDF link = 0.014 to emulate a target delay of 35.7 ms. Since virtual
time passes 71 (= 1

0.014) times faster than real time, the emulated

94 H.W. Lee et al. / J. Parallel Distrib. Comput. 104 (2017) 88–98
Fig. 11. Validation of delay emulation for a wide area network. (a) Real-world
topology (b) Emulation topology with delayVtarget =

71.4
2 ms; (c) Real round-trip

time distribution; (d) Emulated round-trip time distribution with adaptive time
dilation—the TDF controller maintains TDF at TDF link = 0.014; (e) Emulated round-
trip time distribution when TDF = 0.1; (f) Emulated round-trip time distribution
when TDF = 1.

round-trip timemeasured in a VH has a relatively high variance, as
shown in Fig. 11(d).

When we increase TDF to 0.1 (from TDF link = 0.014 computed
by the TDF controller), the variance of emulated round-trip time
is reduced, as shown in Fig. 11(e). If TDF is increased even more,
the variance of emulated delay is further reduced, as shown in
Fig. 11(f).

This experiment shows that operating the emulation system at
TDF < 1 results in excessive variance of the link delays. Therefore,
we restrict the range of TDF values to be larger than one.

4.4. Virtual link under traffic loads

In this section, we evaluate the accuracy of emulated delay and
throughput in scenarios where TDF dynamically changes due to
traffic loads. As PHs are heavily loaded, the TDF load agent adap-
tively changes TDF to control the load. PHs’ CPU loads are con-
trolled to the target load 60%, at which VHs are able to generate
traffic without packet losses.

4.4.1. Single link scenario
We test emulated delay and throughput for the topology

depicted in Fig. 12(a). In this test, we consider the LAN scenario
used in Section 4.3; for the virtual link between VH1 and VH2, the
target data rate rateVtarget and the target delay delayVtarget are 1 Gbps
and 118 µs respectively.

As VH1 sends to VH2 1000-byte UDP packets at 100Mbps, their
physical hosts (i.e. PH1 and PH2) are heavily loaded to process
the packets. The TDF controller dynamically changes TDF load,PHi
(i.e., a minimum TDF required to control PHi’s loads offered by the
VH traffic generation) depending on the traffic loads, as shown in
Fig. 12(b). The minimum TDF required for a target delay 118 µs,
TDF link, is approximately 4.1. System TDF is obtained by taking the
Fig. 12. Validation of delay and throughput emulation under a traffic load in
a VH–VH scenario. (a) Emulation topology where 100-Mbps UDP traffic passes
through a virtual link with rateVtarget = 1 Gbps and delayVtarget = 118 µs. (b) System
TDF (=max(TDF load,PH1, TDF load,PH2, TDF link)) dynamically changes. (c) Emulated
round-trip time is close to 236µs (=2 ·delayVtarget). (d) Emulated throughput is close
to the offered load, 100 Mbps.

maximumof TDF link and TDF load for all PHs. Since TDF load,PH1 is at all
times the largest value among TDF load,PH1, TDF load,PH2, and TDF link,
the TDF load,PH1 drives the system TDF.

While the system TDF dynamically changes overmore than one
order of magnitude as shown in Fig. 12(b), the emulated round-
trip time is relatively constant and close to the target of 236 µs
(=2 · delayVtarget), as shown in Fig. 12(c). The emulated throughput
is approximately the same as the offered load (i.e., 100 Mbps), as
shown in Fig. 12(d). We observe that these emulated delays and
throughput closely resemble real delays and throughputmeasured
in a real-world scenario depicted in Fig. 10(a), where physical host
1 generates 100-Mbps UDP traffic towards physical host 2. Since
the 1-Gbps network link is lightly utilized by the 100-Mbps traffic
(i.e. 10% usage), the real round-trip time distribution is similar to
the distribution without traffic shown in Fig. 10(c).

4.4.2. Multiple links scenario
We test emulated delay and throughput by mapping multiple

VHs in a single PH, and running an application that generates
network loads. We construct the emulation topology depicted in
Fig. 13(a); themapping on the physical hosts is shown in Fig. 13(b).

Every virtual host VHi running on PH1 is connected to virtual
host VHi′ running on PH2 through a virtual link with a target data
rate 1 Gbps and a target delay 118 µs. A total of 8 VH–VH′ pairs
are created. Each VH on PH1 runs an application which gener-
ates 1000-byte UDP packets towards their counterpart on PH2 at
3 Mbps.

As eight VHs on PH1 generate a total of 24-Mbps (=3Mbps × 8
VHs) UDP traffic, the VHs heavily load PH1, thus increasing
TDF load,PH1 (i.e., a TDF required to control the PH1’s load), as
shown in Fig. 13(c). A TDF for PH2’s load control, TDF load,PH2,
is one because PH2’s CPU loads are always maintained below
the target load 60% and we operate at TDF ≥ 1 for accurate
emulation, as discussed in Section 4.3. The system TDF =

max(TDF load,PH1, TDF load,PH2, TDF link) is most of emulation time
driven by TDF load,PH1, as seen in Fig. 13(c).

H.W. Lee et al. / J. Parallel Distrib. Comput. 104 (2017) 88–98 95
a
b

c

d e

Fig. 13. Validation of delay and throughput emulation under a traffic load in a
8VHs–8VHs scenario. (a) Emulation topology where VHi generates 3-Mbps UDP
traffic towards VHi′ through a virtual linkwith a target data rate 1 Gbps and a target
delay 118 µs, and the total offered load is 3 Mbps * 8 VH–VH′ pairs = 24 Mbps.
(b) Physical deployment of 8VHs-8VHs in two PHs. (c) TDF load,PH1 primarily drives
the system TDF, while changing dynamically. (d) Emulated round-trip time is close
to 236 µs (=2 · delayVtarget). (e) Emulated throughput of a VHi-VHi′ pair is close to
the offered load 3 Mbps.

While TDF load,PH1 in the VH–VH scenario fluctuates mostly
between 10 and 20 for 100-Mbps traffic, as seen in Fig. 12(b),
TDF load,PH1 in the 8VHs–8VHs scenario also changes between 10
and 20 for a total of only 24-Mbps traffic. Therefore, multiple VHs
produce larger CPU loads for the same amount traffic.

Independent of TDF changes shown in Fig. 13(c), our system
emulates a round-trip delay of ∼236 µs (=2 · delayVtarget), as
shown in Fig. 13(d). In addition, Fig. 13(e) shows that our system
emulates 3-Mbps throughput for 3-Mbps traffic loads per VHi–VHi′
insensitive to TDF.

4.5. High throughput and low latency

In this section we evaluate our emulation system in a high
throughput and low latency scenario.

We emulate an InfiniBand-like network link of 10 Gbps and
5-µs latency using a physical link of 1-Gb Ethernet, as shown
in Fig. 14(a). The 1-Gb physical link between VMs has approxi-
mately 500-µs latency without time dilation. VM1 generates TCP
traffic using Iperf [18] towards VM2.

Fig. 14 shows the results. Before generating TCP traffic, TDF system
is maintained at approximately 100 by TDF link, since we emulate
5-µs latency over a physical link with a latency of 500 µs.
When TCP traffic is generated, TDF load increases TDF system to
approximately 300, as shown in Fig. 14(b). The throughput reaches
approximately 9.55 Gbps, which is reasonable for TCP over a
10-Gbps link. The round-trip time is maintained at approximately
10 µs (= 5 µs× 2-ways), as shown in Fig. 14(d).
Fig. 14. When TCP traffic is generated on a virtual link that emulates 10 Gbps and
5 µs latency, the TDF increases approximately 300, as shown in (a) and (b). The
increased system TDF allows for approximately 10-Gbps TCP throughput and 10-µs
round-trip time, as shown in (c) and (d).

Table 1
File transfer time (virtual time).

Target rate (Mbps) File size (MB) File transfer time (s)

10 500 434.36
100 500 41.70

1000 500 5.68

4.6. Real-world application

In this section we evaluate our emulation system using two
real-world applications. We first run the very secure FTP daemon
vsftpd [38] on a virtual link connecting two virtual Linux boxes
or devices. In addition, we run the VLC media player from
VideoLan [35] on a virtual network with devices running on a
variety of OSs including Linux, FreeBSD, and Junos.

4.6.1. vsftpd
In the virtual network topology shown in Fig. 15(a), vsftpd runs

in PH1’s virtual Linux server and the Linux default ftp client in
PH2’s virtual Linux client downloads a 500-MB file from the virtual
Linux server. We perform three tests where a 500-MB file in the
virtual Linux server is transferred to the virtual Linux client, while
only changing the target rate of the virtual link from 10 Mbps to
100 Mbps, and then 1000 Mbps. As shown in 15(b), our system
controller adaptively controls TDF depending on dynamic traffic
loads caused by the different link data rates.

While the TDF is dynamically changing, the file transfer time in
virtual time is only affected by virtual link’s target rates, as shown
in Table 1. When disregarding TCP/IP overhead and processing
time, for a 500-MB (i.e. 4000-Mb) file the file transfer times should
be 400, 40 and 4 s for virtual links of 10, 100 and 1000 Mbps
respectively. Table 1 shows that our system correctly emulates
each file transfer time.

4.6.2. VLC media player
We test a real application, the VLC media player, on a network

configuration where a virtual FreeBSD server, three Junos routers,
and a virtual Linux client run on three physical hosts, as shown
in Fig. 16(a). The target data rate and delay of a virtual link is
denoted by {rateVtarget , delay

V
target}.

96 H.W. Lee et al. / J. Parallel Distrib. Comput. 104 (2017) 88–98
Fig. 15. When transferring a 500-MB file using vsftpd through a virtual link shown
in (a), as the virtual link is configured for a higher target data rate, our controller
increases the TDF accordingly, as shown in (b).

Fig. 16. (a) While a VLC media player on a virtual FreeBSD server generates UDP
packet streams towards a virtual Linux client, we disable a virtual link between two
virtual Junos routers at 30 s, and we restore the link at 90 s; three virtual routers
running OSPF first route the VLC packet streams over Route 1, and then switches
the route to Route 2 at the link’s breakdown. (b) During the link’s breakdown, the
throughput becomes zero for 36 s and then recovers with a new route (i.e., Route
2). (c) The round-trip time between the virtual FreeBSD server and the virtual Linux
client is around 46 ms over Route 1; during the link’s breakdown, all packets are
lost, and then the round-trip time becomes around 206 ms over Route 2; after the
link’s restoration, the packets are routed over Route 1 and the round-trip time gets
back to about 46 ms.

A VLC media player operates as a streaming server on the
virtual FreeBSD server running on PH1. The other VLC operates
as a streaming client on the virtual Linux client running on PH3.
The streaming packets pass through three Junos routers, which
route the packets using the Open Shortest Path First (OSPF) routing
protocol. We set each OSPF cost metric of the router interfaces to
1 for the 100-Mbps link and 10 for the 10-Mbps link.

In our experiment scenario, a VLC player on virtual FreeBSD
server starts to generate UDP packet streams using a video filewith
480p resolution and Xvid Codec; this video file generates 1-Mbps
packet streams on average. As shown in Fig. 16(a), at 30 s in virtual
time,wedisable the virtual link betweenVirtual Junos Router 1 and
Virtual Junos Router 3, and at 90 swe restore the virtual link.When
the virtual link is disabled, the route of VLC’s packet streams is
switched fromRoute 1 to Route 2.When the virtual link is restored,
the route is switched back from Route 2 to Route 1.

Fig. 16(b) shows the throughput results. As a VLC player starts
to generate video streams from the virtual FreeBSD server, the
throughput measured at virtual Linux client increases to around
1Mbps.When a virtual link break down, the throughput decreases
to zero. However, since the virtual routers regularly exchange link
state update packets (i.e., link state advertisements), they find a
new route, Route 2 in Fig. 16(a). Hence, the throughput is recovered
at virtual second 66, as it takes 36 s for the OSPF protocol in the
default configuration to update its state and calculate new routes.

Additionally, while the virtual link between the virtual Junos
routers goes down at 30 s and is restored at 90 s, we continue to
measure the ping’s round-trip time between the virtual FreeBSD
server and the virtual Linux client. Fig. 16(c) shows the result.
Since ping packets are routed over Route 1 before the link’s break-
down, the round-trip time measures approximately 46 ms, whose
value can be calculated as (1 + 10 + 10 + 1 ms) × 2 (i.e., two-
ways) + virtual elements’ processing time. During the link’s down
time, all ping packets are lost. However, when the OSPF protocol
finds a new path (i.e., Route 2), the round-trip time becomes ap-
proximately 206 ms as given by (1 + 100 + 1 ms) × 2 + virtual
elements’ processing time.When the broken link is restored at vir-
tual second 90, the OSPF eventually switches the route from Route
2 to Route 1 because Route 1’s routing cost of 4 (1 + 1 + 1 + 1), is
less than Route 2’s cost of 12 (1 + 10 + 1). Since link state updates
require some time (23 s in our experiment), the route switch occurs
at virtual second 113, resulting in the same 46-ms round-trip time.

In summary, we have shown that our system can emulate net-
work links in a real-world application running on heterogeneous
real-world OSs.

4.7. System overhead

Our system controls virtual links to emulate target network
performance. Our system synchronizes the time passage rate
in virtual hosts distributed over multiple physical hosts by
exchanging two different types of synchronization messages,
TDF link and TDF load. System loads caused by the synchronization
messages should be minimized such that VHs can maximize the
use of their PH’s computing resources, but a larger synchronization
interval degrades the responsiveness. Experimentally, when a
synchronization interval decreases to less than 10 ms, the
synchronization messages start to affect the overall system loads.
To avoid this system overhead, our system uses a synchronization
update period of 10 ms as a reasonable tradeoff between
responsiveness to change and overhead.

5. Related work

Our approach provides a methodology for accurate network
emulation as the time dilation factor dynamically changes for
system load control. Hence, we first introduce prior work related
to time dilation and then to dynamic time dilation.We also discuss
prior work regarding node emulation and link emulation, which
are used in our system. Finally, we introduce previous network
emulators.

H.W. Lee et al. / J. Parallel Distrib. Comput. 104 (2017) 88–98 97
5.1. Time dilation

SliceTime [40] and DieCast [14] manage virtual time with
different approaches. The mechanism used in SliceTime [40] is
to alternately suspend and resume the entire system in order to
connect VMs to discrete event simulations [22] thatmay lag behind
in time under heavy system loads [39]. In contrast, DieCast [14]
controls how fast virtual time proceeds by using a time dilation
factor (TDF). If the TDF is greater than one, then virtual time passes
slower than real time, so physical resources appear to virtual
nodes to be TDF times faster [15]. Similarly, the Distributed Open
Network Emulator (dONE) uses a temporal model referred to as
relativistic time [3].

The approaches in [39,40,15,14] are static; i.e., the relative ratio
between real and virtual time is fixed for the life of the VMs.
NETplace [11] focuses on an initial placement of virtual nodes onto
physical nodes using prior knowledge of the average load in order
to minimize the network emulation runtime. NETbalance [12]
extends NETplace for experiments with varying and unknown
load by dynamically changing TDF using epoch-based virtual time
[13,10]. NETbalance migrates virtual nodes during experiments to
distribute the load and reduce the experiment runtime. NETplace
and NETbalance create multiple virtual nodes in each VM for
highly scalable emulation, whereas NEAT creates a virtual network
using VMs, each of which is mapped onto a fully-virtualized node,
focusing on the emulation of network link connecting the VMs.

5.2. Node emulation

There are several hypervisors that can create and run virtual
machines (VMs), each running a separate OS instance. QEMU-KVM
[31,20], Xen [41], and VirtualBox [36] are popular and free hyper-
visors, while VMware [37] is a commercial product.

Many academic research efforts have been based on Xen [41],
but the QEMU-KVM hypervisor is recommended as the optimal
choice for high performance computing environments [42]. Fur-
thermore, QEMU-KVM runs each guest OS as a separate process in
a PH, so established OS mechanisms such as shared memory and
interprocess communications can be used to add new features to
the hypervisor. QEMU-KVM can perform at near native speed with
the KVM kernel component addition that provides a full virtualiza-
tion solution. Hence, we choose QEMU-KVM to create virtual hosts
(VHs) in our emulation system.

5.3. Link emulation

From the perspective of a host OS, when using QEMU-KVM for
virtualization, each VH is a process, and the VHs communicate
with one another via virtual links, which are implemented
through inter-process communications [33] or using the Universal
TUN/TAP device driver [34]. TUN/TAP provides packet reception
and transmission for user space programs.

As an inter-process communication method, QEMU-KVM can
connect multiple guest systems on a VLAN using TCP or UDP
sockets. The VLAN here is a network switch running in the context
of a QEMU process. Another method is to use TAP interfaces to
provide full networking capability [32]. Virtual links between VHs
are built such that TAP interfaces on VHs connect to each other
through an Ethernet bridge [26] provided by the Linux kernel.
Furthermore, an Ethernet bridge enables a TAP interface of the VH
to connect to the PH’s interface. This allows a VH to connect to
another VH on a different PH. We use TAP interfaces and Ethernet
bridges for virtual links in our emulation system.

A virtual link emulates the link’s bandwidth, packet delays,
and error rates. Dummynet [7] intercepts packets in the protocol
stack, and passes them through one or more objects called queues
and pipes that can be used to produce the effects of bandwidth
limitation, propagation delay, bounded-size queue, packet losses,
multipath, etc. EmuNET [19] has been designed to test protocols
under a variety of conditions, such as bit rate limitations, network
delay and jitter, different queuing schemes, etc. NetPath [1] is
a scalable software-based link emulator that features fixed and
probabilistic packet propagation delay emulation, probabilistic bit
errors, probabilistic packet loss, packet duplication, and packet
reordering capability. NetEm [28,16] emulates variable delays,
packet losses, duplication and reordering. Tc [25] can classify traffic
and limit bandwidth.

The approach in [24] constructs a virtual link between a VH
and a simulator. There is no direct network link between VHs, and
all network links are implemented through simulation models. In
contrast, our current paper proposes a solution for emulating a
direct network link between VHs.

5.4. Network emulators

Several large testbeds partially use or significantly depend
on emulation techniques. PlanetLab [30] is a distributed overlay
network for evaluating planetary-scale network services, and al-
lows multiple services to run concurrently, each in its own slice
[2,4]. Emulab [8] provides integrated access to emulated PC nodes,
an 802.11 a/b/g testbed, and universal software defined radios
(USRP devices), and can be expanded into PlanetLab testbeds
for live Internet experimentation. GENI [9] provides researchers
across the country with collaborative environments on which new
network architectures and their implementations can be tested,
while supporting scalable experimentation on shared and hetero-
geneous infrastructure. DETERlab [5] supports experimentation on
next-generation cyber security technologies, and uses the Emulab
cluster testbed software to control andmanage a pool of PCs. Mod-
elNet [27] emulates the delays, losses, and throughput of packets
traveling between different application instances.

In contrast to large testbeds, Mininet is a lightweight emulator
that runs real kernel, switch, and application code on a single ma-
chine and allows it to scale to hundreds of nodes [21].

6. Conclusion

In this paper we propose an approach for emulating network
links in emulation systemswith adaptive TDFs. Our emulation sys-
tem uses QEMU-KVM that supports full virtualization to create
virtual nodes, such that the system can emulate heterogeneous
systems with distributed nodes running different OSs. The mini-
mumTDF required for a delay emulation, TDF link, allows our system
to accurately emulate the target delays of virtual links. Our per-
formance evaluation shows that NEAT consistently and accurately
emulates the delay and throughput of the virtual links despite vari-
able system loads.

References

[1] S. Agarwal, J. Sommers, P. Barford, Scalable network path emulation, in:
Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems, 2005. 13th IEEE International Symposium on, Sept. 2005,
pp. 219–228.

[2] Andy Bavier, Mic Bowman, Brent Chun, David Culler, Scott Karlin, Steve Muir,
Larry Peterson, TimothyRoscoe, TammoSpalink,MikeWawrzoniak, Operating
system support for planetary-scale network services, in: Proceedings of the 1st
conference on SymposiumonNetworked SystemsDesign and Implementation
- Volume 1, USENIX Association, Berkeley, CA, USA, 2004.

[3] C. Bergstrom, S. Varadarajan, G. Back, The distributed open network emulator:
Using relativistic time for distributed scalable simulation, in: Principles of
Advanced and Distributed Simulation, 2006. PADS 2006. 20th Workshop on,
2006, pp. 19–28.

[4] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike
Wawrzoniak, Mic Bowman, PlanetLab: an overlay testbed for broad-coverage
services, SIGCOMM Comput. Commun. Rev. 33 (2003) 3–12.

http://refhub.elsevier.com/S0743-7315(17)30019-9/sbref2
http://refhub.elsevier.com/S0743-7315(17)30019-9/sbref4

98 H.W. Lee et al. / J. Parallel Distrib. Comput. 104 (2017) 88–98
[5] DeterLab. http://www.isi.deterlab.net.
[6] Vedavyas Duggirala, Srinidhi Varadarajan, Open network emulator: A parallel

direct code execution network simulator, in: Proceedings of the 2012
ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed
Simulation, PADS’12, IEEE Computer Society, Washington, DC, USA, 2012,
pp. 101–110.

[7] Dummynet. http://info.iet.unipi.it/~luigi/dummynet.
[8] Emulab. http://www.emulab.net.
[9] GENI Project. http://www.geni.net.

[10] A. Grau, K. Herrmann, K. Rothermel, Efficient and scalable network emulation
using adaptive virtual time, in: Computer Communications and Networks,
2009. ICCCN 2009. Proceedings of 18th Internatonal Conference on, Aug.
2009, pp. 1–6.

[11] A. Grau, K. Herrmann, K. Rothermel, NETplace: Efficient runtimeminimization
of network emulation experiments, in: Performance Evaluation of Computer
and Telecommunication Systems, SPECTS, 2010 International Symposium on,
July 2010, pp. 265–272.

[12] A. Grau, K. Herrmann, K. Rothermel, NETbalance: Reducing the runtime of
network emulation using live migration, in: Computer Communications and
Networks, ICCCN, 2011 Proceedings of 20th International Conference on, Aug.
2011, pp. 1–6.

[13] A. Grau, S. Maier, K. Herrmann, K. Rothermel, Time jails: A hybrid approach
to scalable network emulation, in: Principles of Advanced and Distributed
Simulation, 2008. PADS’08. 22nd Workshop on, June 2008, pp. 7–14.

[14] Diwaker Gupta, Kashi V. Vishwanath, Amin Vahdat, DieCast: Testing dis-
tributed systems with an accurate scale model, in: Proc. of NSDI, 2008, pp.
407–421.

[15] Diwaker Gupta, Kenneth Yocum, Marvin Mcnett, Alex C. Snoeren, Amin
Vahdat, Geoffrey M. Voelker, To infinity and beyond: time warped network
emulation, in: ACM Symposium on Operating Systems Principles, 2005.

[16] S. Hemminger, Network Emulationwith NetEm, in: Linux Conf. Au, April 2005.
[17] Hierarchical Token Bucket. http://luxik.cdi.cz/~devik/qos/htb.
[18] Iperf. http://iperf.sourceforge.net.
[19] Ayman Kayssi, Ali El-Haj-Mahmoud, Emunet: a real-time network emulator,

in: Proceedings of the 2004 ACM Symposium on Applied Computing, SAC’04,
ACM, New York, NY, USA, 2004, pp. 357–362.

[20] KVM. http://www.linux-kvm.org.
[21] Bob Lantz, Brandon Heller, Nick McKeown, A network in a laptop: Rapid

prototyping for software-defined networks, in: Proceedings of the 9th ACM
SIGCOMMWorkshop on Hot Topics in Networks, Hotnets-IX, ACM, New York,
NY, USA, 2010, pp. 19:1–19:6.

[22] Averill M. Law, David M. Kelton, Simulation Modeling and Analysis, third ed.,
McGraw-Hill Higher Education, 1999.

[23] Hee Won Lee, Mihail L. Sichitiu, David Thuente, High-performance emulation
of heterogeneous systems using adaptive time dilation, Int. J. High Perform.
Comput. Appl. 29 (2) (2015) 166–183.

[24] Hee Won Lee, David Thuente, Mihail L. Sichitiu, Integrated simulation and
emulation using adaptive time dilation, in: Proceedings of the 2Nd ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM
PADS’14, ACM, New York, NY, USA, 2014, pp. 167–178.

[25] Linux Advanced Routing and Traffic Control HOWTO. http://lartc.org/howto.
[26] Linux Ethernet Bridge. http://www.linuxfoundation.org/collaborate/

workgroups/networking/bridge.
[27] ModelNet. http://modelnet.ucsd.edu.
[28] NetEm. http://www.linuxfoundation.org/collaborate/workgroups/

networking/netem.
[29] Network Emulation with Adaptive Time Dilation. http://www.ece.ncsu.edu/

wireless/MadeInWALAN/AdaptiveTimeDilation.
[30] PlanetLab. http://www.planet-lab.org.
[31] QEMU. http://wiki.qemu.org.
[32] QEMU Networking. http://en.wikibooks.org/wiki/QEMU/Networking.
[33] W. Richard Stevens, UNIX Network Programming, Volume 2 (2nd ed.):
Interprocess Communications, Prentice Hall PTR, Upper Saddle River, NJ, USA,
1999.

[34] Universal TUN/TAP Device Driver. http://vtun.sourceforge.net/tun.
[35] VideoLan. http://videolan.org.
[36] VirtualBox. http://www.virtualbox.org.
[37] VMWare. http://www.vmware.com.
[38] vsftpd. https://security.appspot.com/vsftpd.html.
[39] Elias Weingärtner, Florian Schmidt, Tobias Heer, Klaus Wehrle, Synchronized

network emulation:matching prototypes with complex simulations, SIGMET-
RICS Perform. Eval. Rev. 36 (2008) 58–63.

[40] Elias Weingärtner, Florian Schmidt, Hendrik Vom Lehn, Tobias Heer, Klaus
Wehrle, SliceTime: a platform for scalable and accurate network emulation,
in: Proceedings of the 8th USENIX Conference on Networked Systems Design
and Implementation, NSDI’11, USENIX Association, Berkeley, CA, USA, 2011.

[41] Xen. http://www.xenproject.org.
[42] A.J. Younge, R. Henschel, J.T. Brown, G. von Laszewski, J. Qiu, G.C. Fox, Analysis

of virtualization technologies for high performance computing environments,
in: Cloud Computing, CLOUD, 2011 IEEE International Conference on, July
2011, pp. 9–16.

[43] Yuhao Zheng, D.M. Nicol, A virtual time system for openvz-based network
emulations, in: Principles of Advanced and Distributed Simulation, PADS,
2011 IEEE Workshop on, 2011, pp. 1–10.

Hee Won Lee received a Ph.D. degree in Computer
Science from North Carolina State University in May
2015. He received a B.E. in Electrical Engineering from
Korea University in 2002, and a Master of Software
Engineering from Carnegie Mellon University in 2005.
During 2002–2009, he worked for KT Corporation as a
Technical Member of Staff. He is currently employed as a
PrincipalMember of Technical Staff at AT&T Labs Research.
His primary research interest is in networking and storage
systems.

Mihail L. Sichitiu was born in Bucharest, Romania. He
received a B.E. and an M.S. in Electrical Engineering from
the Polytechnic University of Bucharest in 1995 and 1996
respectively. In May 2001, he received a Ph.D. degree
in Electrical Engineering from the University of Notre
Dame. He is currently employed as a professor in the
Department of Electrical and Computer Engineering at
North Carolina State University. His primary research
interest is in networking.

David Thuente received a Summa Cum Laude Honors B.S.
degree inMathematics from Loras College. He received his
M.S. and Ph.D. degrees from the University of Kansas. He is
currently Professor of Computer Science at North Carolina
State University. He has done extensive consulting in
sonobuoy signal processors and networking protocols and
applications for Magnavox Electronic Systems Company.
He has also done network consulting for Hughes Systems
Company and Raytheon among others. He is a Professor
Emeritus of Purdue University. His primary research area
is networking.

http://www.isi.deterlab.net
http://refhub.elsevier.com/S0743-7315(17)30019-9/sbref6
http://info.iet.unipi.it/%7Eluigi/dummynet
http://www.emulab.net
http://www.geni.net
http://luxik.cdi.cz/%7Edevik/qos/htb
http://iperf.sourceforge.net
http://refhub.elsevier.com/S0743-7315(17)30019-9/sbref19
http://www.linux-kvm.org
http://refhub.elsevier.com/S0743-7315(17)30019-9/sbref21
http://refhub.elsevier.com/S0743-7315(17)30019-9/sbref22
http://refhub.elsevier.com/S0743-7315(17)30019-9/sbref23
http://refhub.elsevier.com/S0743-7315(17)30019-9/sbref24
http://lartc.org/howto
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://modelnet.ucsd.edu
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.ece.ncsu.edu/wireless/MadeInWALAN/AdaptiveTimeDilation
http://www.ece.ncsu.edu/wireless/MadeInWALAN/AdaptiveTimeDilation
http://www.ece.ncsu.edu/wireless/MadeInWALAN/AdaptiveTimeDilation
http://www.ece.ncsu.edu/wireless/MadeInWALAN/AdaptiveTimeDilation
http://www.ece.ncsu.edu/wireless/MadeInWALAN/AdaptiveTimeDilation
http://www.ece.ncsu.edu/wireless/MadeInWALAN/AdaptiveTimeDilation
http://www.ece.ncsu.edu/wireless/MadeInWALAN/AdaptiveTimeDilation
http://www.ece.ncsu.edu/wireless/MadeInWALAN/AdaptiveTimeDilation
http://www.planet-lab.org
http://wiki.qemu.org
http://en.wikibooks.org/wiki/QEMU/Networking
http://refhub.elsevier.com/S0743-7315(17)30019-9/sbref33
http://vtun.sourceforge.net/tun
http://videolan.org
http://www.virtualbox.org
http://www.vmware.com
https://security.appspot.com/vsftpd.html
http://refhub.elsevier.com/S0743-7315(17)30019-9/sbref39
http://refhub.elsevier.com/S0743-7315(17)30019-9/sbref40
http://www.xenproject.org

	NEAT: Network link emulation with adaptive time dilation
	Introduction
	Proposed approach
	Virtual link design
	TDF control
	TDF synchronization

	System implementation
	System architecture
	Virtual link implementation
	Physical link delay measurement
	System load control

	Performance evaluation
	System parameters
	Virtual host delay delayVHsR
	Exponential moving average coefficient α and TDFlink change threshold

	Minimum TDF
	Network link delay emulation
	Local area network scenario
	Wide area network scenario

	Virtual link under traffic loads
	Single link scenario
	Multiple links scenario

	High throughput and low latency
	Real-world application
	vsftpd
	VLC media player

	System overhead

	Related work
	Time dilation
	Node emulation
	Link emulation
	Network emulators

	Conclusion
	References

