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Abstract—Constructing an accurate performance model for
distributed storage systems has been identified as a very difficult
problem. Researchers in this area either come up with an
involved mathematical model specifically tailored to a target
storage system or treat each storage system as a black box and
apply machine learning techniques to predict the performance.
Both approaches involve a significant amount of efforts and data
collection processes, which often take a prohibited amount of
time to be applied to real world scenarios. In this paper, we
propose a simple, yet accurate, performance estimation technique
for scalable distributed storage systems. We claim that the total
processing capability per IO size is conserved across a different
mix of read/write ratios and IO sizes. Based on the hypothesis, we
construct a performance model which can be used to estimate the
performance of an arbitrarily mixed IO workload. The proposed
technique requires only a couple of measurement points per IO
size in order to provide accurate performance estimation. Our
preliminary results are very promising. Based on two widely-
used distributed storage systems (i.e., Ceph and Swift) under a
different cluster configuration, we show that the total processing
capability per IO size indeed remains constant. As a result, our
technique was able to provide accurate prediction results.

Index Terms—performance modeling, distributed storage sys-
tems, measurement

I. INTRODUCTION

Modern distributed storage systems provide a rich set of
features and configuration options along with horizontal scal-
ability. The users of such storage systems will observe a
linear increase in performance as more hardware resources
(i.e., hosts and disks) are added to the infrastructure. Having
any centralized components in its datapath can hamper the
desirable level of scalability. Thus, such systems exploit a form
of consistent hashing mechanism. Good examples include
CRUSH algorithm [1] for Ceph and distributed hash table
(DHT) for Swift [2] and Cassandra [3]. The essential role
of these algorithms is to distribute the load evenly across the
available hardware resources (load balancing) so that we can
eliminate performance bottleneck. In addition, each distributed
storage system provides a different guarantee to users. For in-
stance, Ceph provides strong consistency for write operations
while Swift/Cassandra have eventual consistency semantics for
the same operation. Moreover, many such systems provide an
option to enable erasure coding to have a reduced storage
space with the same level of reliability. Some storage systems
offer multiple storage APIs while others focus on providing a

single API1. All these characteristics and features complicates
the overall dynamics of distributed storage systems.

Due to the complexity discussed so far, the performance
modeling of such systems has been identified as a difficult
problem. Unless one would like to go through an exhaustive
measurement effort to cover the whole parameter space as in
[4], researchers in this area either construct a fairly involved
mathematical model specifically tailored to a target storage
system [5], [6] or treat each system as a black box and apply
machine learning techniques to predict the performance [7],
[8]. Both approaches involve a significant amount of efforts
and data collection processes, which often take a prohibited
amount of time to apply to real world scenarios.

In this paper, we propose a simple, yet accurate, perfor-
mance estimation technique for scalable distributed storage
systems. Specifically, our technique aims to help capacity
planning processes, e.g., identifying max IOPS for an arbi-
trary read/write ratio with a minimal evaluation process. Our
technique is motivated by the fact that one of the main design
goals of modern distributed storage systems is to distribute the
workload as evenly as possible across all available compute
resources. Thus, our technique is developed for a class of
distributed storage systems that do not have any centralized
components such as metadata servers in their datapaths. With a
sufficient scale, the host or disk specific behavior is amortized
by the aggregation at a higher level. Based on the observa-
tion, we claim that the aggregated processing capability of
a whole distributed storage system remains unchanged for a
given IO size. In our preliminary evaluation, we present a
promising result describing that the total processing power
of the system is indeed a constant per IO size, thereby
demonstrating that we can get accurate estimation results with
our proposed technique. Our evaluation results based on two
popular distributed storage systems (i.e., Ceph and Swift)
exhibit reasonably accurate results for small IOs (< 10%)
and still remain reasonable for larger IOs (5%∼25%). The
technique also shows similar accuracy for mixed IO sizes
(Sec. III).

1Many commercial object storage system supports Amazon S3 API,
whereas a system like Ceph supports multiple APIs, e.g., block, file system,
and object by adding additional layer.



II. OUR APPROACH

As discussed, modern distributed storage systems emphasize
horizontal scalability. In other words, adding more disks
and/or nodes will linearly increase the storage capacity and IO
performance of the entire storage system. A primary design
principle of such systems include a) no single point of failure
and b) automatic load balancing enabled by placing data
objects as evenly as possible across all available hardware.
Because of this nature, a well-designed distributed system
often shows reasonably stable performance if its configuration
is unchanged and the workload is stable. Hence, we make the
following claim.

Claim: If HW/SW/workload settings remain unchanged, the
total processing capability of a distributed storage system is
invariant for a given IO size.

Now we will elaborate what this statement actually means.
Let Uread and Uwrite be a unit work for the system to
perform read and write operation respectively. Then, for a
mixed workload with an arbitrary read/write ratio, the claim
can be re-written as follows:

B = Uread · Tread + Uwrite · Twrite (1)
Uwrite = Uread · frw (2)

where B is a constant, and Tread and Twrite are read and
write performance (ops/s), respectively. frw is a coefficient
that reflects the load difference between read and write. If we
combine the two equations, we get the following result:

C = Tread + Twrite · frw. (3)

Again, C is a constant ( B
Uread

) for a given IO size (objec-
t/block size). With this form, we can acquire frw value with
just two data points, i.e., the measured IOPS performance of
the systems when all of the IOs are read (100% read ops/s)
and write (100% write ops/s). In detail, with 100% read IOs,
Eq. 3 becomes C = T100%read. With 100% write, the equation
becomes C = T100%write ·frw, which in turn can be re-written
to:

frw =
T100%read

T100%write
. (4)

At this point, it is worth noting that frw changes along with
IO size. We show our experimental results in Sec. III.

A. IO workload with arbitrary read/write ratio

With our hypothesis, it is fairly straight-forward to esti-
mate the performance of a mixed workload with an arbitrary
read/write ratio. Suppose that we have a target workload
specification: the ratio of Rread to Rwrite where Rread +
Rwrite = 100(%). Then, IOPS for read and write operations
can be written as k ·Rread and k ·Rwrite = k · {100−Rread}
where k is a constant.

We plug these terms into Eq. 3 and get the following:

k ·Rread + k ·Rwrite · frw = C (5)

where constant C can be estimated using 100% read IOPS
(i.e., C = T100%read). If we solve this new equation with
respect to k, then we get the following close-form solution:

k =
T100%read

Rread + {100−Rread} · frw
. (6)

Since we can obtain frw from Eq. 4, once we get the value
of k, it is trivial to calculate Tread = k ·Rread and Twrite =
k ·Rwrite.

B. Extension to support mixed IO sizes

Another dimension often occurred in a real world scenario
is to have a workload with mixed IO sizes. Our model can be
extended to support mixed IO sizes (e.g., multiple object sizes
or multiple block sizes). Suppose that we have heterogeneous
object sizes in our target workload, S1, S2, · · · , SN and know
the exact proportion of each object size to the total objects,
P1, P2, · · · , PN where

∑N
i=0 Pi = 1.

Now the total processing capability per object size (SN )
becomes a fraction of the whole workload that is proportional
to PN , i.e., PN ·CSN . If we plug the result into Eq. 6, we can
get an array of equations as follows.

k̄S1 =
P1·T

S1
100%read

Rread+{100−Rread}·f
S1
rw

= P1 · kS1

...

k̄SN =
PN ·T

SN
100%read

Rread+{100−Rread}·f
SN
rw

= PN · kSN .

Just multiplying known read/write ratios with each
k̄S1 ...k̄SN will result in read and write IOPS for each IO size.
Thus, more formally, total IOPS (= Ttotal) can be calculated
using the following equation:

Ttotal =

N∑
i=1

{RSi

read + RSi
write} · k̄

Si = 100 ·
N∑
i=1

Pi · kSi . (7)

III. EVALUATION

A. Methodology

The main purpose of our evaluation effort is twofold. First,
we empirically verify the correctness of our model described in
Sec. II. Second, we show the estimated performance numbers
are indeed accurate.

To prove our claim, we exhaustively run customized work-
load profiles covering all necessary IO parameters, e.g., all
combinations of interested IO (block or object) sizes, read-
/write ratios and mixed IO sizes. For estimation, we used 100%
read and 100% write data to calculate the total processing
capability of a given IO size (CS). We then compared the
measured results with the estimated performance numbers. In
this preliminary evaluation effort, our focus is given to one
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Fig. 1. Experimental Setup

performance metric, i.e., IOPS (ops/s). Lastly, we use the
following equation to present an estimation error:

Error =
|estimated−measured|

measured
× 100 (8)

where the value of measured is the average performance (i.e.,
IOPS) during an experimental run2.

B. Cluster configuration: Ceph and Swift

We use two representative open source distributed storage
systems: Ceph [9] and Swift [2]. Each storage system is
deployed on a different cluster. Client location per cluster was
different. Ceph cluster is in a hyper-converged setting where
client VMs are running together with Ceph storage systems.
In case of Swift cluster, client hosts are physically separated
from the Swift cluster.

Ceph cluster: Figure 1(a) illustrates a Ceph cluster con-
figuration that we used for our experiments. The setup is
a hyper-converged cloud deployment with all flash storage
where Ceph is providing virtual disks to VMs orchestrated
by OpenStack [10]. We use 9 Dell R730xd nodes for the
Ceph storage cluster and each node has two Xeon CPU E5-
2695 v4 2.10GHz, 256GB memory, 4 NVMe SSDs (SM1715
1.6TB), and 25G Mellanox CX-4 Lx NIC3. Storage pools
for the experiments are configured as 3x replication. Clients
in 104 VMs run fio benchmark tool [11] and consume the
Ceph storage via block device interface on guest OS, which
is eventually connected to a host-side RBD (Rados Block
Device) interface. Each VM’s fio process had 8 jobs with

25 minute duration per run
3One 25G port is enabled during the experiments.

ioengine of libaio, iodepth of 32, filesize of 100GB when
running with different block sizes and read/write ratios.

Swift cluster: As a second environment, we construct an
OpenStack Swift [2] cluster composed of five nodes and
one client node, as shown in Fig. 1(b). For each node, we
use a Dell R720xd server equipped with two CPUs (Intel
Xeon E5-2630L 2.00GHz), 128GB RAM, two 10GB Ethernet
NICs, and two SSDs (SM863 480GB). The proxy server is
deployed in one node. For each IO request from a client, it
will look up the location of the account, container, or object
in the ring and route the request accordingly. The Swift object
servers are deployed in four nodes, each of which stores,
retrieves and deletes objects on its local devices. We build
an object ring with 3x replication using eight SSDs – each
with an equal weight – distributed over the object servers.
The client node runs COSBench object storage benchmark
tool [12] to generate custom IO workloads. We used 32
workers for all COSBench runs. We prepared 16,000 objects
before we run experiments (500 objects in each container and
a total of 32 containers). When reading and writing objects
for data collection, we randomly choose an identifier among
32,000∼64,000 objects across 32 containers.

C. Results

a) Verifying the hypothesis:: To verify our hypothesis
made in Sec. II, we first calculate frw = T100%read

T100%write
for each

block/object size based on measured data where T100%read

is 100% read IOPS and T100%write is 100% write IOPS.
Fig. 3 shows the result. The results are very well-aligned
with our hypothesis that the total processing capacity is
constant across different read/write ratio per block size (CS).
Perhaps not surprisingly, frw values vary a lot along with
block/object sizes and underlying distributed storage system
implementation. For example, for Ceph, a range of frw was
3∼9 depending on the block size. In case of Swift, however,
the range was 2∼3 for different object sizes. We explain that
this difference is mainly caused by each system’s consistency
guarantee. Specifically, Ceph provides strong consistency. In
our environment, therefore, a write request will be acknowl-
edged after all three copies are fully-written. In contrast, Swift
uses eventual consistency, so write operations (with respect to
reads) are relatively cheaper than Ceph’s case even with the
same level of data redundancy (i.e., 3x replication for both
Ceph and Swift experiments).

Arbitrary read/write ratio: Once we get frw per IO size, we
plug them into Eq. (6) to get an estimated performance (see
Sec II-A). After we get the estimated values, we compare them
with the measured data. For the Ceph cluster, Fig. 2(a) shows
that C values are approximately constant per IO size regardless
of read/write ratios, and Fig. 2(b) and 2(c) show the accuracy
of the proposed scheme. For the Swift cluster, Fig. 2(d)
shows that C values are also approximately constant per IO
size regardless of read/write ratios, and Fig. 2(e) and 2(f)
show the accuracy of the proposed scheme. The results are
very encouraging. Even though we use a completely different
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) reflects the load difference between
read and write IO operation. The amount of work required for
read and write operations can be very different per storage system
implementation and their configurations.

cluster and storage systems, for the block/object sizes equal
or less than 32KB, the accuracy is ∼90% or above. Similarly
for larger block/object sizes, most of the time the estimation
accuracy is 80% or higher. The reason for having a little

lower accuracy for larger block size could be the difference in
IO size between the application generating IOs and physical
medium underneath. A typical sector size of disk drives is
512 bytes in Linux and max IO size from the perspective
of block subsystem is less than the object sizes we tried in
our evaluation, e.g., hundreds of KB range in our corporate
environment. Due to this mismatch, the operating system needs
to do more IO operations to physical media than the number
of IOs issued by applications, and consequently we get more
variance in the estimation results.

In summary, it is worth emphasizing again that our proposed
technique requires only two data points (i.e., 100% read IOPS
and 100% write IOPS) to get the frw value. After getting
frw, we will be able to get a fairly accurate estimate for the
performance of a mixed read/write IO workload.

Mixed IO sizes: We evaluated how well our model in Sec. II-B
can predict total IOPS when the workload has multiple IO
sizes. We used the Swift cluster for this evaluation item. From
a client, we generate IO workloads with the following mixes:
• case 1: 16KB 100% reads and 1MB 100% reads
• case 2: 64KB 100% writes and 1MB 100% writes
• case 3: 16KB 50/50% r/w and 512KB 50/50% r/w
To estimate total IOPS (= Ttotal in Eq. 7), for each object

size 16KB, 64KB, 512KB, and 1MB, we first calculate f16KB
rw ,

f64KB
rw , f512KB

rw , and f1MB
rw by using frw = T100%read

T100%write
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based on measured data. We then calculate kSi for each
object size Si. For example, for 16KB objects k16KB =

T 16KB
100%read

Rread+{100−Rread}·f16KB
rw

. In case 1, for 16KB reads, Rread =

100, so k16KB =
T 16KB
100%read

100 . In case 3, for 16KB 50% reads,

k16KB =
T 16KB
100%read

50+50·f16KB
rw

.
In each case, we use 10/90, 30/70, 50/50, 70/30, and

90/10 for the ratio of the first IO sizes (i.e., 16KB, 64KB,
and 16KB) to the second IO sizes (i.e., 1MB, 1MB, and
512KB), respectively. For example, in case 1, for P1 = 0.1
and P2 = 0.9, we can calculate total IOPS by Ttotal =
100{0.1 · k16KB + 0.9 · k1MB}. In a similar fashion, we
calculate total IOPS for all three cases.

The results depicted in Fig. 4 were surprisingly good!
Overall, the errors between estimated and measured total IOPS
are less than 9%.

IV. SCOPE AND LIMITATIONS OF OUR APPROACH

Our evaluation results are very promising as shown in
Sec. III and we expect the technique to greatly reduce the
amount of effort and time for some practical tasks, e.g.,
capacity planning for production deployment. In order to
understand the applicable scope of our proposed technique,
we discuss the limitations of our technique in this section.

First, it is worth noting that our technique relies on a linear
behavior of the underlying distributed storage system. So if the
system behavior becomes non-linear, our technique is unlikely
to work well or we may need to re-sample required measure-
ment points again to maintain accuracy. A good example is
to incorporate an impact of performance interference under
a heavily loaded environment. Our technique is not intended
to solve this loaded scenario. A summary of this research
area can be found in our prior work [13]. Aging issues of
storage hardware [14], [15] and/or file system [16], [17] can
be mitigated by re-sampling, i.e., running 100% read/write for
the interested IO sizes, if performance degradation does not
cause too much noisy behavior.

Second, our work is not tailored to any specific workload
that might have some dependencies among IOs. There is a
large body of work whose design goal is to optimize the stor-
age system so as to best exploit the temporal/spatial locality of
a given workload often with a sort of caching mechanism. Our
work, however, aims to provide a baseline performance cap for
generic cloud environments where all types of workloads can
co-exist. Moreover, note that our technique’s target storage
systems are highly distributed by design, so most workloads
become random IOs when each request reaches the underlying
medium.

V. RELATED WORK

Performance modeling of storage systems are extensively
studied in the past couple of decades. Due to the space
constraint, we cover only a part of such research activities.
Compared to most work in this space, our technique is much
simpler to apply for a real world scenario, while potentially
achieving accurate estimation results in many use cases.

Analytical modeling: If one has a deep domain knowledge
of a certain system, he could construct a model to capture
every single details of the dynamics. Examples of such efforts
are as follows. Shriver et al. [5] models disk performance in
the presence of caches and IO reordering. Kelly et al. [18]
devises a probabilistic model to estimate IO request latency
and verify the model with simulation. BASIL [19] models a
linear region of disk-based storage systems for load balancing
tasks in order to aid live migration tasks of virtual hard disks.



IRONModel [6] identifies that a model-based approach is
brittle in real world, and provides a way to localize the problem
derived from the redundancy identified between the model and
system-specific implementation details. Similar to IRONModel
in some sense, our proposed technique provides a close-form
equation to estimate IO performance and, when it is applied to
any real system, the results will be steered by a few measured
data points for the IO size of interest.

Machine learning approach: There is a body of work that
essentially treats storage system as black box and applies
statistical machine learning techniques based on performance
data collected from the system. Inside-out [8] deals with the
performance of distributed storage systems such as Ceph. One
natural and popular approach often relies on a broad category
of regression techniques [20]–[23]. Ganapathi [7] explores
three classes of data- and compute-intensive applications in his
PhD thesis, using more involved machine learning techniques
such as KCCA (Kernel Canonical Correlation Analysis) and
presents promising results with anecdotal success stories. In
general, these techniques require a large volume of data to
bootstrap and reach a desirable level of prediction perfor-
mance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel technique to accurately
estimate the performance of an arbitrarily mixed workload,
in terms of read/write ratio and IO size. Our surprisingly
simple technique requires only a few data points to provide its
intended accuracy and can be applicable to any system as long
as one can run a configurable workload a priori. Much work
remains. In the future, we will collect more measurement data
points using different storage system implementations, e.g.,
Cassandra, to further verify whether our technique is generally
applicable. In addition, we plan to explore the applicability of
our technique to a close-loop feedback controller for software-
defined storage ecosystem in an enterprise environment.
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