
Dejavu: Reinforcement Learning-based Cloud
Scheduling with Demonstration and Competition

Abstract—As Cloud’s adoption surges across industries, the
limitations of its default scheduler, particularly on large scales
or for jobs outside of its initial design scope, have become
increasingly prominent. With the expansion of cloud usage, the
industry is facing increased demands for integrating diverse cloud
architectures. However, the default schedulers in various cloud
services were primarily engineered with a focus on predictable
tasks that exhibit minimal variance. Despite this need, clear and
adaptable strategies to navigate these complex scenarios remain
elusive, largely due to inherent design challenges.

To address these issues, this paper presents Dejavu. This novel
approach combines reinforcement learning with neural networks
to learn and resolve scheduling problems more effectively. To
tackle the extended training time associated with reinforcement
learning, we’ve applied pretraining using Demonstrations from
existing heuristics, thereby improving training efficiency in our
cloud scheduling solution. This process prepares the neural
network for subsequent reinforcement learning. A robust reward
function is devised to push Dejavu to compete with, and even-
tually outperform, the exploited heuristics and other existing
algorithms. The experimental results demonstrate the efficacy
of Dejavu, showing remarkable improvements in key metrics.
Specifically, compared to the default scheduler, it boosts resource
utilization by 6% and shortens scheduling time by 3% during the
scheduling period. Thus, it represents a significant leap forward
in cloud scheduling, offering improved efficiency and versatility.

Index Terms—Container-based cloud, Scheduling, Reinforce-
ment learning, Offline RL

I. INTRODUCTION

In the previous decade, there has been a significant surge in
the integration of cloud services among mid-sized and large
enterprises, marking one of the swiftest expansions of cost in
IT departments. As documented in a comprehensive study by
Gartner, end-user spending on public cloud services globally
reached an impressive $597.3 billion in 2023, demonstrating a
dramatic escalation from $260 billion in 2020. This remarkable
growth trajectory in the cloud industry serves as an incentive
for enterprises to transition their systems to the cloud for
potential cost efficiency.

However, this move often incurs a variety of additional
expenditures, primarily due to the maintenance of multi-
ple cluster infrastructures. Large-scale corporations, includ-
ing Samsung or Google, which run diverse workloads, face
challenges associated with the independent management of
multiple clusters for different purposes. The need for man-
aging separate clusters, which may create scenarios of surplus
demand in one cluster while others remain underutilized, leads
to unnecessary costs. These organizations are aware of the
potential benefits of cluster integration, yet most fail to achieve
this primarily due to scheduling issues.
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Fig. 1: The architecture of the proposed scheduling algorithm

Traditional heuristics applied on clusters are optimized for
upcoming jobs, suggesting that these systems lack the flexibil-
ity to handle diverse workloads, potentially leading to physical
or financial damage. Therefore, the efficient deployment of
expensive compute clusters is a critical concern for enterprises.
Even small improvements in resource utilization, such as
reducing idle capacity and minimizing turnaround times, could
yield substantial cost savings at scale. In this context, cluster
schedulers emerge as vital tools for achieving such savings.

The challenge of optimal resource scheduling is typically
classified as a combinatorial optimization problem, a category
that includes numerous problems that are either NP-hard or
NP-complete. Traditional approaches to these problems often
involve approximation methods or heuristic strategies. Over
time, empirical research has proposed various heuristics, such
as first-fit, best-fit, and shortest-job-first (SJF), among others.
However, the efficacy of these heuristic strategies is contingent
on several factors, including the statistical patterns of resource
demands and constraints on multiple resources. If the under-
lying scenario or the weight of importance shifts, a heuristic
algorithm optimized for previous tasks may underperform.

Yet, the practical implementation of this ideal is fraught with
difficulties, primarily due to the large-scale and intricate nature
of resource management such as the non-stationary arrival
and departure of jobs in cloud environments. Consequently,
developing a dynamic, adaptable resource scheduler remains
a formidable challenge in the field.

In response to the outlined challenges, this paper proposes
Dejavu as illustrated in Fig. 1, tailored to accommodate
various task scheduling and resource allocation scenarios in the
container-based cloud environment. Our contributions through
Dejavu are as follows:

• By pretraining the neural network, we significantly reduce



the training time required for scheduling. This expedited
process not only enhances efficiency but also contributes
to superior scheduling performance.

• In the process of creating a demonstration, rather than in-
discriminately recording every timestep of each episode,
we develop a mechanism to measure the similarity be-
tween experiences. This allows us to prevent consecutive
learning from analogous experiences, thereby avoiding
repetitiveness and redundancy.

• Dejavu employs a competitive reward function. This
function, which is calculated based on the comparison
with the kube-scheduler and existing heuristic algorithms,
enables our scheduler to be finely tuned to outperform the
baselines. This ensures its adaptability and efficacy in a
variety of scheduling scenarios.

• Adding to the contributions, we also develop a simulator
that faithfully virtualizes the characteristics of clouds.
This advancement has significantly simplified the design
of the reward function and the assessment of algorithm
performance, further enhancing the overall efficiency of
the system.

Through these innovations, Dejavu seeks to address the
existing issues in cloud scheduling, paving the way for more
efficient and versatile cloud computing.

The rest of the current paper is organized as follows: In
Section II, we provide an overview of key concepts and
knowledge related to our research. Our proposed methodology
is described in Section III. including the problem formulation,
building framework, and algorithm design. Experimental eval-
uation and result analysis are carried out in Section IV. We
survey the literature in Section V. with the following discus-
sion in Section VI. Finally, conclusions and some prospects
are given in Section VII.

II. PRELIMINARIES

A. Reinforcement learning

Reinforcement learning (RL) has garnered significant at-
tention due to its ability to learn from interactions with an
environment without relying on pre-existing labeled datasets.
It enables an agent to learn optimal actions through trial and er-
ror, making it suitable for domains where explicit instructions
or expert knowledge may be limited or unavailable. It models
a problem as a Markov Decision Process (MDP), in which an
agent decides an action based on observed state changes and
receives rewards. Based on it, the objective of this agent is to
maximize cumulative reward over time (i.e., Expected return).
Through exploration and exploitation, the agent interacts with
the environment to learn the optimal policy.

However, it often suffers from the dilemma that exploration
can harm the system as it makes wrong decisions. Therefore,
many RL-based systems utilize a model that was trained
offline but in some applications, exploration during runtime
is inevitable since it is hard to guarantee the stationary from
the previous environment.

B. Speed up reinforcement learning with demonstration

The ultimate goal of RL is to train the model to predict
values that closely align with the outputs of the defined reward
function. One of the primary challenges of RL is the extensive
time required for training as it requires tons of samples. The
model must undergo numerous iterations, making mistakes and
experiencing failures, before it can achieve a satisfactory level
of performance.

For example, by training the network with decisions made
by an expert or relatively more optimized algorithm, con-
vergence time can be reduced. This approach, known as
offline RL, allows the model to learn from the experience
of other heuristics, thereby accelerating the convergence of
the training process. However, this approach suffers from a
compounding error issue, which stems from slight alterations
in its decision-making process, resulting in a cascading effect
that could jeopardize the entire sequence of decisions. Alter-
natively, an offline reinforcement learning approach could be
utilized, which essentially shares similarities with its online
counterpart. Nevertheless, this method also grapples with prob-
lems related to distribution shifts caused by the discrepancies
between collected demonstrations and real-world experiences.
Although the problem persists, it is an active area of research
with many potential solutions being explored.

Within the realm of offline RL strategies, we opted for the
Deep Q-Learning from Demonstrations (DQfD) approach in
[17]. DQfD was proposed by the research team at Google
DeepMind as a means to address the inherent issues of offline
RL, by simultaneously employing temporal difference (TD)
error and supervised loss.

III. PROPOSED METHODOLOGY

This section offers a comprehensive introduction to the
proposed model. Initially, we present the modeling of nodes
and pods to accurately describe the scheduling environment.
Subsequently, we construct the Dejavu scheduler by incor-
porating models of the container-based cloud environment,
scheduling agents, possible actions, and reward functions.

A. Environment

We consider a cluster composed of n number of nodes in it.
Each of these nodes is equipped with the capability to deploy
individual pods within themselves, thereby facilitating efficient
computational tasks and enabling flexible scheduling. In this
paper, we assume that if any resource in a node becomes
fully consumed by an incoming pod, the scheduling process is
considered unsuccessful. In other words, if the node is unable
to accommodate the additional resource requirement of a new
pod, it signifies a failure of the scheduling decision.

In addition, we take into account d types of resources (e.g.,
CPU, memory). Each of these resource types plays a crucial
role in enabling the smooth functioning of the nodes and, in
turn, the cluster. The variation in resource types further adds
complexity to our scheduling and resource allocation prob-
lems, emphasizing the necessity for an efficient and optimal
scheduling algorithm.
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In every time step, jobs that meet the designated arrival
time are submitted to the cluster in an online manner. This
encapsulates the real-world unpredictability and randomness
of job arrivals, reflecting the dynamic nature of actual com-
putational workloads. Each job is defined not just by its
computational requirements, but also by its individual resource
quota, effectively setting a limit on the resources it consumes.

Moreover, each job is characterized by a predefined but
unknown duration to both cluster and scheduler, which adds an
additional layer of complexity to the scheduling problem. Once
a job is completed, it is promptly terminated and removed from
its host node.

B. Design of a Markov Decision Process (MDP) model

State definition. First of all, we define the state in our RL-
base system. The state space can be represented through a
combination of the individual nodes’ states within a cluster
and the status of the pending pod.

Statet = [Clustert, Pod−1
t ] (1)

Clustert = [Node1t , Node2t , ..., Nodent ] (2)

Starting with the cluster state, we consider a cluster composed
of n nodes. The nodes’ state at timestep t can be denoted as
Clustert which is the aggregation of each node’s state. Then,
we denote the state of ith node at a given time t as Nodeit.

Nodeit = [CPU i
t ,Memoryit] (3)

The individual node’s state Nodeit encapsulates the available
resources within itself from its total resource pool. For our ex-
perimentation, we utilized 2 key resources (CPU and memory)
which can be collected by default.

Pod−1
t = [CPUpod−1

t ,Memorypod
−1

t ] (4)

Also, we consider the earliest queued pod awaiting deploy-
ment within the Kubernetes cluster. We represent the resource
quota of the pending pod at time t as Pod−1

t . Here, the Pod−1
t

captures the resources needs of a pod.

Statet = [Clustert, Pod−1
t ] = [CPU1

t ,Memory1t , ...,

CPUn
t ,Memorynt , CPUpod−1

t ,Memorypod
−1

t ] (5)

When aggregating all those individual node states and pods
states at time t as Statet, we combined and represented them
as a one-dimensional vector, the length of which corresponds
to the number of nodes multiplied by the number of resources
plus the number of resources for the pending pod resources.
Action definition. The scheduler has been engineered to make
a single decision at each point in time for the pod that is
queued first, or earliest in the queue. The primary purpose of
this scheduling approach is to determine an optimal node for
the deployment of this pod.

Actiont ∈ {0, nodei|i = 1, 2, ..., n} (6)

Accordingly, the action as referred to in this context, is the
decision taken by the scheduler to select the specific node

Algorithm 1 Base Reward Algorithm
Require: S′

t ▷ Cluster’s state in next step
Require: At ▷ Action taken at time t
1: procedure R(S′

t, At)
2:
3: Cpu′

t,Mem′
t ← S′

t
4: [Cpu1

t , Cpu2
t , ..., Cpun

t ]← Cpu′
t

5: [Mem1
t ,Mem2

t , ...,Memn
t ]←Mem′

t
6:
7: is failed← If Schedule succeed
8: is idle← If did nothing while it was available
9:

10: AvgCpu =
∑n

i=1 Cpui
t

n
▷ n = # of nodes

11: AvgMem =
∑n

i=1 Memi
t

n
12:
13: StdCpu =

∑n
i=1(Cpui

t−AvgCpu)2

n

14: StdMem =
∑n

i=1(Cpui
t−AvgMem)2

n
15:
16: RBD1 =

√
((Stdcpu)2 + (Stdmem)2)

17:
18: RBD2 = abs(CpuAt

t −MemAt
t )

19:

PWD = {
−1, if is failed,
−1, if is idle,
0, otherwise.

20: Reward← α ·RBD1c + β ·RBD2c + γ · PWD
21:
22: return Reward
23: end procedure

where the pod will be deployed. Action 0 signifies inaction,
which implies that no pod should be scheduled on any node.
Reward function. We designed the reward signal to guide
the reinforcement learning agent towards optimal solutions
for our primary objective: the minimization of scheduling and
turnaround time, which has the potential to significantly en-
hance the scheduling performance. Specifically, we formulate
equations to encapsulate the factors we deem critical to our
model.

At first, we incorporate a penalty for incorrect decisions
made by the scheduler. In a real-world scenario, the scheduler
should avoid erroneous decisions such as attempting to deploy
when there are no pending pods or scheduling on a node that is
already at capacity or would exceed its capacity if a pending
pod was scheduled. Although such issues can be mitigated
through extra measures such as node filtering in the actual
domain, we integrate this aspect into our reward mechanism
to streamline the scheduler’s architecture, thereby potentially
reducing scheduling time.

Secondly, we consider the degree of resource balance across
nodes. If schedulers consistently deploy to the same node or do
so more frequently, it can result in the node being saturated and
potentially experiencing a slowdown in performance due to
the accumulation of pods, while other nodes remain relatively
idle. To circumvent this, we introduce a factor to estimate
the degree of imbalance in resource distribution across nodes.
This factor is represented in the following Algorithm 1. This
equation returns the standard deviation of each resource, taking
into account the squared mean of them for normalization.

Lastly, we take into account the balance of resources within
the scheduled node. The optimal schedule should strive to
balance resource distribution within the scheduled node as
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well. Given that the scheduling problem is NP-hard and
decisions must be made in a greedy manner based on current
information, it is imperative to balance resources as much as
possible to accommodate future incoming pods. If this is not
considered, the cluster may become unavailable while there
are still many idle resources in the other nodes. By calculating
the difference in the resource utilization ratio of the scheduled
node, we can evaluate the quality of the decision.

Finally, we define the reward function as follows, in which
α, β, and γ are the empirical values set according to the cluster
or objectives to scale the factors.
Competitive reward. Building upon the designed reward
factors presented earlier in Algorithm 1, we introduce the
competitive reward function, an innovative and potentially
more optimizing reward function, as described in Algorithm 2.
This new reward function operates on the principle of compe-
tition with the baseline scheduler. Our objective is not only
to outperform the existing heuristic algorithms but also to
navigate the nuances of task scheduling, which might not be
easily assessed based purely on absolute performance.

Unlike the previously discussed reward function, the com-
petitive approach measures the agent’s decisions against those
made by the baseline scheduler under identical conditions.
To implement this, we duplicate the environment’s state and
apply it to the baseline algorithm to retrieve its decision.
When evaluating each action, we calculate the individual
factors RBD1 and RBD2 for both the agent and the baseline
scheduler. After that, we compute the difference.

The final step involves the addition of PWD to the cu-
mulative differences. The inclusion of PWD serves as a
preventative measure against incorrect decisions, ensuring a
balance between competitive optimization and decision accu-
racy. Through this advanced reward mechanism, our model
strives for superior performance while retaining an awareness
of the decision-making trends of its competitors.

C. Neural network design

We present the design of DQfD network, which is based on
the Deep Q-Network (DQN) architecture. The DQN consists
of a Q-network, which functions as a policy network for
decision-making, and its duplicate, the Q-target-network. Both
of these networks are comprised of fully connected layers. The
network takes the aforementioned state as an input and outputs
the predicted rewards for all possible actions. Then, the agent
takes the action with the greatest estimated reward value and
gets the feedback in the form of the next state and reward.
Upon executing an action and receiving the corresponding
reward, our model is capable of calculating the loss and
subsequently performing an optimization step. This process
enables the model to refine its predictions and improve its
performance over time.

The Deep Q-learning from Demonstrations (DQfD) operates
over the DQN network, integrating temporal difference (TD)
updates with the supervised identification of the demon-
strator’s actions. The use of TD error and supervised loss
optimizes the network for additional training. The supervised

Algorithm 2 Competitive Reward Algorithm
Require: frbd1, frbd2, fpwd ▷ Reward factor functions
1: procedure R(env, πrl, πbase) ▷ π is policy
2:
3: St ← env.get state()
4: env2← env.copy()
5:
6: arl ← πrl(St) ▷ Retrieve actions
7: abase ← πbase(St)
8:
9: St+1

rl ← env.step(arl) ▷ Take one step
10: St+1

base ← env2.step(abase)
11:
12: RBD1c ← abs(frbd1(S

t+1
rl )− frbd1(S

t+1
base))

13: RBD2c ← abs(frbd2(S
t+1
rl )− frbd2(S

t+1
base))

14:
15: PWD ← fpwd(env) ▷ Check if RL does wrong
16:
17: Reward← RBD1c +RBD2c + PWD
18:
19: return Reward
20: end procedure

loss component allows the algorithm to mimic the demonstra-
tor’s actions, while the TD loss provides a framework for it
to understand a consistent value function, enabling ongoing
learning through reinforcement learning (RL).

D. Training algorithm

1) Pretraining with demonstration
Given that RL is designed to learn from a running envi-

ronment, there is a risk of causing damage to the system
or the environment during the training process if it affects
the system while exploring. This may not be a significant
issue in simulated environments such as Atari games, but it
becomes a critical concern in real-world systems like cloud
clusters. Alternatively, in our circumstances, the agent needs
to learn within a live setting where its actions have tangible
repercussions. This necessitates that the agent demonstrate
strong online performance from the beginning of the training.

To expedite the learning process and establish a solid
baseline, we propose leveraging the knowledge of existing
scheduling algorithms. For instance, the kube-scheduler used
in Kubernetes employs a simple greedy algorithm that scores
nodes based on resource availability, and it performs well
under typical conditions.

By utilizing the decisions made by the baseline algorithms
for preliminary offline training, we can accelerate the RL
model’s learning process and quickly reach a level of perfor-
mance that is comparable to existing solutions. This approach
allows us to harness the existing algorithm’s decisions, which
provide the RL agent with appropriate search directions for
optimal solutions, thereby enabling faster learning.

In order to gather demonstrations from the baseline algo-
rithms, we operated a simulated cloud environment and al-
lowed the baseline algorithm-based schedulers to interact with
it. We collected sets of [statet, actiont] until the completion
of each episode, which is defined as the point at which all
pods in the scenario have been scheduled. Upon collecting
all the data, we obtained a substantial volume of baseline
demonstrations. In a practical application, demonstrations can
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also be conveniently gathered from a running cluster. The
decision trajectory (τ ) collected from each episode can be
denoted as follows:

τ ∈ {s1, a1, s2, a2, ..., s−1, a−1} (7)

where st represents the state and at is the action taken by
the baseline at time t. Upon gathering the [st, at] trajectory,
we extract the state-action-next action set from it to create a
new dataset specifically for pretraining. This process allows
us to structure the data in a way that is most beneficial for
our reinforcement learning model. The demonstration dataset
(D), thus formed, can be represented as follows:

D = {(s1, a1, s2), (s2, a2, s3), ..., (s−1, a−1, slast), } (8)

This method of pretraining with demonstration not only saves
time but also ensures that our RL-based scheduler can be
safely and effectively deployed in real-world environments.

In the initial pretraining phase, the agent selects mini-
batches from the demonstration data to refine the network,
employing four types of losses: 1-step double Q-learning
loss, n-step double Q-learning loss, supervised large margin
classification loss, and L2 regularization loss on the network’s
weights and biases. The supervised loss is employed for
categorizing the demonstrator’s actions, and the Q-learning
loss ensures the network aligns with the Bellman equation
and serves as a foundation for TD learning.

The importance of supervised loss in pretraining cannot be
understated. Given the demonstration data inherently covers a
narrow segment of the state space without encompassing all
possible actions, there are many state-action combinations for
which there is no grounding data to assign realistic values.
If we were to simply pretrain the network with Q-learning
updates directed towards the maximum value of the subsequent
state, the network would gravitate towards the largest of these
unanchored variables, spreading these values across the Q
function. We, therefore, incorporate a large margin classifi-
cation loss to prevent this, as in [18].

JE(Q) = maxa∈A[Q(s, a) + l(aE , a)]−Q(s, aE) (9)

By incorporating n-step returns (where n equals 10), we
manage to extend the values from the expert’s trajectory to all
preceding states, thereby enhancing the pretraining process.
The n-step return, represented by the follwoing equation:

rt + γrt+1 + ...+ γn−1rt+n−1 +maxaγ
nQ(st+n, a) (10)

which is computed using a forward-looking view, akin to
the method used in A3C. [19].

An L2 regularization loss is further applied to the network’s
weights and biases, assisting in preventing overfitting on
the somewhat limited demonstration dataset. The total loss
employed to refine the network is a cumulative function of
these four losses, represented by the following equation:

J(Q) = JDQ(Q) + λ1Jn(Q) + λ2JE(Q) + λ3JL2(Q) (11)

Algorithm 3 Selective demonstration collecting algorithm
Require: Dprev , Dcand ▷ Lastly queued Demo & candidate
1: procedure SELECT DEMO(Sprev , Scand, thres)
2:
3: Sprev , Aprev ← Dprev ▷ State and Action
4: Scand, Acand ← Dcand

5: similarity =
Sprev·Scand

(||Sprev||∗||Scand||
6:
7: if |similarity − 1| > thres then
8: return True
9: else

10: if Aprev ! = Acand then
11: return True
12: else
13: return False
14: end if
15: end if
16: end procedure ▷ Add demo if it returns True

2) Selective Demonstration collecting for better learning
We aim to prevent the inherent issue of compounding error

and overfitting in offline learning. Our focus is to make the
process more efficient by curating the demonstration data,
and minimizing the redundancy and similarity between the
collected trajectories. For this, we leverage cosine similarity in
Algorithm 3, to sample demonstrations selectively. The trajec-
tory generated by the baseline schedulers was treated as vec-
tors. These vectors encapsulate an array of data, corresponding
to each episode of the scheduling process. We calculate the
cosine similarity between each incoming trajectory with its
preceding one recorded. If the similarity is within a certain
criterion (5% in our experiment), indicating a high degree of
overlap, we refrained from recording the new trajectory.

On top of it, there is a caveat in this approach. We consider
the case where two similar trajectories could result in different
scheduling decisions. This implies that the two trajectories
could potentially offer diverse learning experiences. By imple-
menting this methodology, we aim to sample a more diverse
and representative set of demonstrations for training the RL
model. This strategy facilitated a more balanced learning
process, reducing the impact of inherent drawbacks of the
imitation learning process.

3) Reinforcement Learning
Reinforcement learning models are expected to handle a

variety of states and consistently make optimal decisions.
However, given that our baseline scheduler (the teacher)
already performs optimally in general, the model has limited
opportunities to experience failure or drastic situations. For
instance, our pre-trained model may not know how to act in
situations where it has made incorrect choices over a long
period, resulting in a severe imbalance of resources across all
or some nodes. Therefore, it may struggle to determine the
appropriate course of action.

Throughout the training process, the agent continually col-
lects experiences over multiple episodes and maintains an
experienced pool, denoted as D, with a capacity of N . As the
model navigates through different scenarios, it is updated with
both explored and exploited experiences, gradually relying
more on the latter. The Q-network outputs Q values, and
losses are calculated to perform a gradient descent step, which
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Fig. 2: Three types of workloads for experiments. Each dot in the figure represents a workload for a pod with its normalized
memory and CPU requirements.

Fig. 3: Resource unbalanced across nodes

Fig. 4: Resource unbalanced within nodes

updates the network. After every K step, the Q-target-network
copies the parameters of the Q-network for weight updates.
This process continues until a predefined condition is met,
such as a certain number of steps or episodes, or a specified
level of rewards. In summary, our reinforcement learning
phase builds upon the knowledge gained from pretraining
with demonstrations, using a combination of exploration and
exploitation to refine the model’s decision-making capabilities.
This approach ensures that our model is not only well-educated
but also capable of adapting to new scenarios.

IV. EXPERIMENTAL EVALUATION

We conduct training and testing of our algorithms using
various configurations. This involves observing trends by
modifying our final models, such as adjusting the selective
demonstration similarity rate and the amount of demonstration

used for training. Finally, we compare our model with repre-
sentative configurations against other baseline algorithms.

A. Experimental Setup

Implementation. we developed a generalized simulated en-
vironment with a graphical user interface. This environment
was not specific to Kubernetes, allowing us to test our model’s
performance and reward functions in a more general context.
To facilitate the testing process, we implemented the OpenAI
gym environment for both the real cluster and the simulated
cluster. This provides a standardized framework for developing
and comparing our RL models, thereby ensuring the robustness
and reliability of our results.
Workloads setup. To evaluate the performance of our pro-
posed model, we utilize the Alibaba cluster trace v2018 [20],
which includes data from approximately 4000 machines over
a period of 8 days, amounting to 20GB traces. To diversify
the challenges and thoroughly test our model, we generate
different scenarios by sampling the trace data with varying
objectives as shown in Fig. 2. These scenarios are as follows:

• General workload: Balanced mix of different tasks to
represent the general situation.

• Duration-intensive workload: The workload is skewed
toward tasks that require longer competition time, testing
the model’s ability to handle time-demanding tasks.

• Resource-intensive workload: Focus on tasks that require
a high amount of resource quota, challenging the model’s
capacity to manage resource-intensive tasks efficiently.

B. Selective demonstration

We conduct our models’ initial performance assessment
across various configurations of the similarity filter rates.
The rate we employed was 5%. These rates indicate that
if an incoming trajectory has a cosine similarity below the
set threshold, the system will disregard it and not add the
trajectory to demonstrations.

In Fig. 5, the initial performance results following pre-
training are displayed. Out of all the tested models, the one
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Fig. 5: Comparison of rewards with different pretraining setup
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Fig. 6: Comparison of different training configurations

trained with 5% filtered demonstration produced superior per-
formance. Conversely, the model trained without any filtered
demonstration yielded the least impressive results among the
pretrained models. However, it’s worth noting that even this
model outperforms those that were not pretrained at all.

The model that emerged as the most efficient in Fig. 5 - the
one with 5% filtered demonstrations exhibited considerable
improvements in key areas. It demonstrated a substantial
11% enhancement in initial performance compared to the
model trained with unfiltered demonstration. Naturally, these
pretrained models exhibit significantly superior performance
when compared to the untrained DQN model.

C. Training convergence

We initially pre-train our model utilizing 106 demonstration
instances, subsequently followed by additional training with
105, 104, and 103 demonstrations. Post this pretraining phase,
we evaluate how the models perform when trained in the
actual operational environment for 3 million timesteps. Fig. 6
illustrates the learning curve of our model (in orange), which
is contrasted against varying configurations. The model trained
with the maximum number of demonstrations significantly
outstrips the performance of all other comparison subjects.
From our observations, it is evident that our model consistently
achieves the highest cumulative reward among all models.
A clear correlation can be discerned between the volume
of demonstrations used for training and the subsequent per-
formance of the model. Moreover, we note that the initial
gap in performance due to pretraining cannot be bridged
throughout training for 3 million episodes. Upon making
a rough assumption that each episode with an adequately
performing scheduler takes approximately 1500 time steps
at minimum, it can be concluded that an untrained model
would not outperform for at least 2000 episodes. This extended
duration of under-performance could lead to significant delays
in a real-world computational cluster.

D. Comparison with baselines

Previous experiments have been carried out with the objec-
tive of substantiating that our final model is the most suitable
option among the feasible choices for implementation. To
further strengthen our confidence in the readiness of our model
for practical use, we proceed to evaluate its performance from
various perspectives. This also encompasses a comparison
against baseline algorithms. For this comparative analysis, we
employ four distinct heuristic algorithms, augmented with the
Ant Colony Optimization (ACO) algorithm.
Maximizing resource utilization rate. In a scenario where a
significant number of jobs are continually being queued to the
cluster, maximizing the use of available resources becomes
imperative. As part of our methodology, we calculate the
average resource utilization rate for the entire cluster through-
out each episode, continuing until the final pod is scheduled.
This measurement enables us to assess the efficiency of the
scheduling algorithm in managing its resources.

The resource utilization rate could be adversely affected by
incorrect decisions, such as scheduling tasks to a node destined
to fail due to availability issues. Furthermore, imbalanced
resource allocation, as depicted in Fig. 4, could also negatively
impact the rate. This is because the scheduler is left with no
option but to wait until a fully engaged resource becomes idle
while another resource may already be largely idle, thereby
resulting in inefficient resource management.

Fig. 7 (a) presents the resultant distribution of the resource
utilization rate. We extract the final 10 records from each
run, which are anticipated to be optimized to the greatest
extent. The model that utilizes pretraining and a competitive
reward function, denoted as DY-PT, stands out with the most
commendable performance among all, achieving a rate of over
92%. This figure is particularly noteworthy as it surpasses the
baseline scheduler, used for pretraining, by more than 4%. In
comparison to the model that operates with a base reward func-
tion in Algorithm 1, the pre-trained model exhibits a slightly
superior performance, with an advantage of approximately 2%.
Balanced resource distribution. The equitable distribution
of resources across and within nodes is vital for optimizing
scheduling performance. This imbalance becomes particularly
challenging when unexpected resource request ratios arise,
such as a pod requiring 1% CPU but consuming 13% memory.
Given the Alibaba trace, we tested was characterized by
imbalances in general, it provides an appropriate setting for
assessing the balancing capabilities of scheduling algorithms.
As depicted in both Fig. 7 (b) and (c), our model significantly
surpasses the performance of the baseline models. When
compared to the Kube-scheduler, it demonstrates an average
improvement of 2%. This result underscores the value of
our pre-trained model, particularly its aptitude for resource
balancing, even in the face of unpredictable job quotas.
Minimizing completion time. Contrary to the factors pre-
viously compared, completion time stands as the ultimate
objective to be achieved by the scheduling algorithm. Our goal
is to enhance the aforementioned factors to possibly reduce the
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(a) Resource utilization rate (b) Resource balance across nodes (c) Resource balance within nodes

Fig. 7: Resource utilization rate, resource balance across nodes (RBD1) and within nodes (RBD2) with baselines.

Fig. 8: Scheduling completion time

scheduling completion time. To facilitate comparison, we test a
scenario involving the scheduling of 8,000 jobs for 80 minutes,
derived from the Alibaba Cluster trace. As evidenced in
Fig. 8, our model completes the assigned scenario workloads
the fastest. Even the untrained model (DY-UT) surpasses the
baseline models.

Minimizing turnaround time. Turnaround time, or the in-
terval a pod must endure before its scheduled task, is crucial
for efficiency. The reduction of this time is an objective of
primary concern due to its significant impact on end-users
experiences and decisions about migrating to different clusters.
This time factor can be influenced by various elements, such as
flawed decision-making and imbalanced resource scheduling,
both of which can prolong the turnaround time. Fig. 9 illus-
trates the performance of our model in minimizing turnaround
time. In comparison to the baseline model, our solution
exhibits an impressive 2.4% reduction in the turnaround time.
This compelling outcome underscores our model’s effective
functionality, despite not incorporating a reward factor that
explicitly considers turnaround time. Instead, our approach
is predicated on the utilization of PWD, a mechanism de-
signed to circumvent incorrect decisions that could potentially
introduce scheduling delays. The other two reward factors,
RBD1, and RBD2, also ensure a comprehensive balancing
of the cluster. The outcome, as depicted in our results, is a
significant improvement in completion time and turnaround
time, contributing to our proposed model’s overall efficiency
and efficacy.

Fig. 9: Turnaround time

V. DISCUSSION

In this section, we delve into potential research areas for
the future and various approaches that we could experiment
with to develop a more efficient and resilient scheduler.
Considerations on various workloads. Our experimental
results reveal that our proposed model is capable of learning
universal scheduling policies that perform effectively on un-
seen workloads. This capability is achieved by capitalizing on
pretraining and a competitive reward function, which could
have potential applications across various cloud workloads.
However, we must consider that workload could undergo
more severe than just interarrival time shifts. Additionally, we
foresee more complex and contradictory scheduling scenarios
in real-world conditions, especially when integrating clouds
with differing demands.
Different scheduling frameworks. In the current model, we
used Kubernetes as a representative cluster for consideration.
However, we have not explored more intricate scheduling
cases like simultaneous or preemptive scheduling. Implement-
ing such features in the Reinforcement Learning (RL) environ-
ments is feasible if the action space is defined appropriately.
Utilizing these concepts could enable us to construct a more
robust scheduler, one that proactively enhances scheduling
performance. To improve the resilience of a scheduling policy
against such changes, training the agent on worst-case scenar-
ios or documented industry errors could be beneficial.
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VI. RELATED WORK

Our research on RL-based cloud scheduling is situated
within a broader context of cloud scheduling and ML appli-
cations. In this section, we review the relevant literature.
Non-RL based scheduling algorithms. Non-RL-based sched-
ulers have been extensively studied. For instance, the Ant
Colony algorithm has been applied to Kubernetes’ resource
scheduling scheme [1]. Tetris [2] proposed a multi-resource
packing strategy for cluster schedulers. Also, [3] focused on
specific aspects such as heterogeneity-aware cluster scheduling
policies for deep learning workloads.
RL or ML-based scheduling algorithms. The application of
RL and ML in cloud scheduling is promising. DeepRM [4]
and RLSK [5] used deep reinforcement learning for resource
management and job scheduling systems. [6] have proposed
Kubernetes scheduling strategies based on LSTM and Grey
model. Also, there was an approach to focus on automatic
resource scaling of containers in fog clusters using reinforce-
ment learning. [7] Other studies in [8] have proposed heuris-
tic multi-objective task scheduling frameworks for container-
based clouds. Some studies have proposed the use of deep
learning for job placement in distributed machine learning
clusters [9], for microservice resource allocation over scientific
workflows [10], and for HPC scheduling [11].
Offline RL approaches. Focusing on the performance of
the demonstrator, DAGGER [12] recurrently generates new
policies by querying the expert policy outside its original
state space, which has been proven to result in no regret over
validation data in terms of online learning. Another common
approach involves establishing a zero-sum game where the
learner selects a policy and the adversary picks a reward func-
tion. [13], [14], [15]. Demonstrations have also been utilized
for inverse optimal control in intricate, continuous robotic
control issues [16]. However, these methods strictly adhere
to imitation learning and do not facilitate learning from task
rewards. DQfD [17] uses human-generated demonstrations for
Atari games, implementing it during the offline RL phase
with additional steps to mitigate the inherent issues of offline
RL. The model can also undergo training after the pretraining
phase, demonstrating solid capability from the outset.

In summary, our research builds upon these previous studies
by proposing a novel RL-based cloud scheduler. Our approach
aims to address some of the limitations identified in the ex-
isting literature and to contribute to the ongoing development
of efficient and effective cloud scheduling strategies.

VII. CONCLUSION

In this paper, we proposed Dejavu, a novel approach that
combines reinforcement learning with a neural network to
effectively address scheduling problems. Applying pretrain-
ing using demonstrations from existing baselines, improves
training efficiency and prepares the neural network for subse-
quent reinforcement learning. A robust reward function further
pushes Dejavu to compete with, and eventually outperform,
exploited heuristics and other existing algorithms. Experimen-
tal results validate the effectiveness of our model, showing

significant improvements in resource utilization, scheduling
time, and reduction of idle resources. Therefore, it signifies
a substantial advancement in cloud scheduling, offering en-
hanced efficiency and versatility.
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